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The adaptive immune system identifies foreign proteins and mounts a response to
rid the body of these “non-self’ proteins and the cells that harbor them. While
essential for combating pathogens, an immune response can also counteract
therapies that introduce proteins intended to treat disease. Immune responses have
been broadly reported following delivery of Enzyme Replacement Therapies in
individuals lacking the enzyme (i.e., cross-reactive immunologic material (CRIM)
negative). Similarly, immune responses could impact effectiveness of gene
therapies expressing “non-self’ proteins.

Disease and Study Background:

A deficiency of B-hexosaminidase A (HexA), Figure 1, causes a toxic accumulation of
GM2 ganglioside, severe neurodegeneration, and death by 5-years in infants
completely lacking this enzyme.

The Sandhoff (SD) knock-out mouse model of this disease shows a severe
phenotype with death occurring at ~16 weeks of age. Intravenous (V) gene transfer
of a variant human HexA enzyme, called HexM, using adeno-associated viral (AAV)
vectors has been shown to be beneficial in treating these mice. Yet, these mouse
studies have also shown an immune response to the expressed human variant
enzyme and the AAV capsid, which we hypothesized could be impacting therapy
effectiveness. Here we investigate methods for inducing immune tolerance towards
the human enzyme expressed from an |V injected scAAVY/HEXM vector in mice.

Study Timeline:
Rapa: Age 5-9 ] Rapamycin: Loading dose of 300 ug on day 1
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Blood draws**
Age 5, 10, & 14 wks

b l

Termination at age 9 wk (9 wk-Term), 16 wk (16 wk-Term) or humane endpoint (Long-Term):

Blood drawn for anti-AAV9 and anti-HexM antibody, splenocyte recovery for T-cell ELISpot, and tissue
collection for vector bio-distribution PCR, MUG/MUGS assays, and GM2 HPTLC assays.

Tail Vein Vector Injection at age 6:

Cohorts 1 thru 8: scAAVY/HEXM 1E+12vg
Cohorts 9 & 10: Vehicle only

* Prednisone given once per day at beginning of the light cycle (i.e., approximately at nadir of cortisol cycle
and peak of blood lymphocyte cycle).

** Blood drawn in sufficient amount from each mouse to conduct HexM specific T-cell IFNy ELISpot, anti-HexM
antibody ELISA, and HexM MUG / MUGS, liver function assays, and Anti-AAV9 antibody.

RESULTS - At the Humane Endpoint
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Figure 2: Model of engineered HexM homodimer (patent pending). Shown is the
active HexM quaternary complex. The u-subunit of HexM is derived from the a-subunit
(orange) of human HexA, which was modified to include the stable homodimer
interface (magenta) formed between the B-subunits (teal) of human HexB and a region
from the B-subunit predicted to interact with GM2AP (grey) and GM2 (spheres). The
22 amino acid changes are primarily internal to the HexM conformational structure.

Immunosuppressant Term at Term at
Cohort Vector Regimen Age Age Long-Term i
# | Injection [———— T~ 1 9wk 16wk | Follow-up | ©oNortRationale
pamy (n) (n) (n)
1 AAVO/HEXM -- -- 4 6 6 Immune Response
Positive Control
2 AAVI/HEXM Short -- 0 6 6
3 AAVO/HEXM Long -- 4 6 6
4 AAVI/HEXM Short 0 6 6
5 AAVO/HEXM Long 4 6 6
6 AAVI/HEXM Short Short 0 6 6
7 AAVO/HEXM Long Long 4 6 6
8 AAVO/HEXM Long Short 0 6 6
9 Vehicle Only -- -- 4 6 6 Immune Response
Negative Control
10 Vehicle Only Long Long 0 6 6 Only Immune
Suppression
20 60 60 Total

Study Limitations:

* Only a small number of assays have been completed in some cohorts.

Assays for anti-AAV9 antibodies and liver function are still in progress.

Assays were conducted at timepoints that may not have detected peak/valley levels.
Only one dose level and starting time of rapamycin and prednisone was studied.
Additional T-cell categorization is still in progress.

Gene Vector Design
The gene for the HexM pu-subunit (HEXM) is packaged in an AAV serotype 9 with a
self-complimentary construct, which has been shown to cross the blood brain barrier
and enter the central nervous system, which is the primary gene transfer target.
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Figure 3: Design of HEXM self-complementary AAV9 vectors.

IMMUNE SUPPRESSION DRUG BACKGROUND:

Recent research has demonstrated that the combined effect of rapamycin plus
prednisone deplete pre-existing levels of antibodies in mice [1]. Here we investigate
whether the combination of these two immune suppression drugs can block an
Immune response, increase levels of regulatory T-cells, and induce immune tolerance
towards a vector expressed human variant protein, HexM.

Rapamycin:

 Clinically used for immune suppression in organ transplant procedures.

 Inhibits lymphocyte activation and proliferation that occurs in response to antigenic
and cytokine stimulation.

« Conjugates to form an immunosuppressive complex that inhibits the activation of
the mammalian “Target Of Rapamycin”, a key regulatory kinase which suppresses
cytokine-driven T-cell proliferation and progression of the cell cycle.

« Shown to have a positive effect on the level of regulatory T-cells, which play a key
role in inducing and maintaining immunologic tolerance [2, 3].

Prednisone:

« Has beneficial anti-inflammatory effects in targeting the functions of monocytes and
macrophages and reducing the number of CD4 T-cells.

 Inhibits the synthesis of certain cytokines involved in the control of lymphocyte
differentiation and participate in the regulation of T cell development by controlling

apoptotic death of immature thymocytes.

« High doses have been shown to result in a rapid, dramatic, and transient increase
in circulating regulatory T cells [4], but others have disputed this finding [5].

RESULTS - From Terminations at 16 Weeks of Age
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Figure 4. Assessment of mice terminated 10-weeks after vector injection. (A) Mice
administered with the long regimen of both rapamycin and prednisone (Cohort #7) showed
greater vector genomes per mouse genome than treated mice without immune suppression
(Cohort #1). (B) Sera anti-HexM antibodies levels were lower in all cohorts with a regimen
of rapamycin compared to Cohort #1. (C) One-way ANOVA for T-cell levels across cohorts
#1 - #8: p<0.097. (Error bars = SEM. Significance in treated cohorts with respect to Cohort

#1. " p<0.05; "™ p=<0.01; ™ p =0.001 using Tukey-Kramer Post hoc.)
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Figure 5: Assessments at humane endpoint. Compared to treated mice without
immune suppression (Cohort #1), the additional administration of a long-regimen of
both rapamycin and prednisone (Cohort #7) resulted in a significant survival benefit
(p<0.001), and at the humane endpoint, showed a reduction in HexM-specific
antibodies (p<0.001) and IFNy T-cells with elevated circulating HexM enzyme activity
levels (p<0.01). (The n for each cohort is 6 if not marked otherwise. Error bars =
SEM. Survival significance in Figure 5-A compares treated cohorts with Cohort #1
and uses Log-Rank test of Kaplan Meier survival. In Figures 5-B, 5-C, and 5-D, the
significance of treated cohorts compared to Cohort #1: * p < 0.05; ™ p < 0.01;

*** p < 0.001 using Tukey-Kramer Post hoc.)

CONCLUSIONS

* Vector genomes per mouse genome in liver tissue taken from mice
terminated at 16 weeks of age (10-wks after gene transfer) were greater
In mice administered with an ongoing regimen of rapamycin and
prednisone (Cohort #7). This suggests the other treated cohorts may
have experienced a cytotoxic response to cells expressing HexM protein.

* Diminished levels of anti-HexM antibodies concurrent with elevated
HexM activity in serum at the humane endpoint, weeks after immune
suppression regimen cessation, implies that a long-regimen of
prednisone and rapamycin induces immune tolerance towards the
vector expressed human HexM “non-self” protein in Sandhoff mice.

* [n general, in vivo gene transfer studies and biodistribution assessments
expressing “non-self” proteins should consider an immune suppression
regimen to avoid cell loss and diminished therapy effectiveness.
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