

(12) United States Patent

Keimel et al.

US 10,016,514 B2 (10) Patent No.:

(45) **Date of Patent:** Jul. 10, 2018

(54) POLYNUCLEOTIDES, VECTORS AND METHODS FOR INSERTION AND EXPRESSION OF TRANSGENES

(71) Applicant: New Hope Research Foundation,

North Oaks, MN (US)

(72) Inventors: John G. Keimel, North Oaks, MN

(US); Michael David Kaytor, Maplewood, MN (US)

(73) Assignee: New Hope Research Foundation,

North Oaks, MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 15/145,293
- (22)Filed: May 3, 2016

(65)**Prior Publication Data**

US 2016/0331846 A1 Nov. 17, 2016

Related U.S. Application Data

- (60) Provisional application No. 62/162,199, filed on May 15, 2015.
- (51) Int. Cl. C12N 15/74 (2006.01)A61K 48/00 (2006.01)C12N 15/86 (2006.01)A61K 38/47 (2006.01)C12N 9/24 (2006.01)A61K 35/761 (2015.01)C12N 15/67 (2006.01)C12N 15/85 (2006.01)C12N 15/864 (2006.01)A61K 38/00 (2006.01)
- (52) U.S. Cl.

CPC A61K 48/0066 (2013.01); A61K 35/761 (2013.01); A61K 38/47 (2013.01); C12N 9/2402 (2013.01); C12N 15/67 (2013.01); C12N 15/85 (2013.01); C12N 15/86 (2013.01); C12N 15/8645 (2013.01); C12Y 302/01052 (2013.01); A61K 38/00 (2013.01); C12N 2750/14143 (2013.01); C12N 2830/34 (2013.01); C12N 2830/42 (2013.01)

Field of Classification Search

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4,373,071 A	2/1983	Itakura
4,401,796 A	8/1983	Itakura
4,458,066 A	7/1984	Caruthers et al.
4,598,049 A	7/1986	Zelinka et al.
5,139,941 A	8/1992	Muzyczka et al.
6,040,172 A	3/2000	Kaplitt
6,180,613 B1	1/2001	Kaplitt et al.

6,468,524 B1	10/2002	Chiorini et al.
6,503,888 B1	1/2003	Kaplitt et al.
6,555,674 B2	4/2003	Tornøe et al.
6,582,692 B1	6/2003	Podsakoff et al.
6,686,168 B1	* 2/2004	Lok C07H 21/04
		435/252.3
7,465,583 B2	12/2008	Samulski et al.
7,790,154 B2	9/2010	Samulski et al.
7,968,698 B2	6/2011	Kadonaga et al.
8,198,079 B2	6/2012	Clements et al.
8,419,710 B2	4/2013	Keimel et al.
9,150,882 B2	10/2015	Kay et al.
2002/0098547 A1	* 7/2002	Tornoe C12N 15/85
		435/69.1
2015/0258180 A1	9/2015	Mahuran et al.

FOREIGN PATENT DOCUMENTS

CA	2888628	4/2014
WO	0212514	2/2002
WO	2005039643	5/2005
WO	2010082622	7/2010
WO	2012115980	8/2012
WO	2012177997	12/2012
WO	2013173129	11/2013
WO	2014077863	5/2014
WO	2015150922	10/2015
WO	2016187053	11/2016

OTHER PUBLICATIONS

"International Search Report and Written Opinion," for PCT/ US2016/032496 dated Jul. 28, 2016 (13 pages).

Bevan, Adam K. et al., "Systemic Gene Delivery in Large Species for Targeting Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders," Molecular Therapy, vol. 19, No. 11 (Nov. 2011), pp. 1971-1980 (10 pages).

Blazeck, John et al., "Promoter Engineering: Recent Advances in Controlling Transcription at the Most Fundamental Level," Biotechnology Journal (2013), vol. 8, pp. 46-58 (13 pages).

Boulaire, Jerome et al., "Transcriptional Targeting to Brain Cells: Engineering Cell Type-Specific Promoter Containing Cassettes for Enhanced Transgene Expression," Advanced Drug Delivery Reviews (2009), vol. 61, pp. 589-602 (14 pages).

(Continued)

Primary Examiner — James S Ketter (74) Attorney, Agent, or Firm — Pauly, DeVries Smith & Deffner LLC

(57)ABSTRACT

Embodiments herein include polynucleotides, vectors and methods for the insertion and expression of transgenes. In an embodiment, a polynucleotide is included. The polynucleotide can include a JeT promoter or variant thereof, an intron sequence less than 400 bases in length, and a polynucleotide sequence encoding a polypeptide or protein operatively linked to the promoter. In an embodiment, a recombinant vector is included. The recombinant vector can include a JeT promoter or variant thereof, an intron sequence less than 400 bases in length, and a polynucleotide sequence encoding a polypeptide or protein operatively linked to the promoter. Other embodiments are also included herein.

(56) References Cited

OTHER PUBLICATIONS

Bryson, Christine J. et al., "Prediction of Immunogenicity of Therapeutic Proteins," Biodrugs, vol. 24, No. 1 (2010), pp. 1-8 (8 pages).

Burke, Thomas W. et al., "*Drosophila* TFIID Binds to a Conserved Downstream Basal Promoter Element That is Present in Many TATA-Box-Deficient Promoters," Genes Dev (1996), vol. 10, pp. 711-724 (15 pages).

Butler, Jennifer E. et al., "The RNA Polymerase II Core Promoter: A Key Component in the Regulation of Gene Expression," Genes & Development (2002), vol. 16, pp. 2583-2592 (10 pages). Cachon-Gonzalez, M. B. et al., "Effective Gene Therapy in an

Cachon-Gonzalez, M. B. et al., "Effective Gene Therapy in an Authentic Model of Tay-Sachs-Related Diseases," Proc. Natl. Acad. Sci. (USA), vol. 103, No. 27 (Jul. 5, 2006), pp. 10373-10378 (6 pages).

Coloma, M. J. et al., "Transport Across the Primate Blood-Brain Barrier of a Genetically Engineered Chimeric Monoclonal Antibody to the Human Insulin Receptor," Pharmaceutical Research, vol. 17, No. 3 (2000), pp. 266-274 (9 pages).

Dayton, Robert D. et al., "The Advent of AAV9 Expands Applications for Brain and Spinal Cord Gene Delivery," Expert Opinion on Biological Therapy (2012), vol. 12, No. 6, pp. 757-766 (17 pages). Deng, Wensheng et al., "TFIIB Recognition Elements Control the TFIIA-NC2 Axis in TYranscriptional Regulation," Molecular and Cell Biology (2009), vol. 29, No. 6, pp. 1389-1400 (12 pages). Dobrenis, Kostantin et al., "Neuronal Lysosomal Enzyme Replacement Using Fragment C of Tetanus Toxin," Proc. Natl. Acad. Sic, USA, vol. 89 (Mar. 1992), pp. 2297-2301 (5 pages).

Dong, Biao et al., "Characterization of Genome Integrity for Oversized Recombinant AAV Vector," Molecular Therapy (2010), vol. 18, No. 1, pp. 87-92 (6 pages).

Duque, Sandra et al., "Intravenous Administration of Self-Complementary AAV9 Enables Transgene Delivery to Adult Motor Neurons," Molecular Therapy, vol. 17, No. 7 (Jul. 2009), pp. 1187-1196 (10 pages).

Even, Dan Y. et al., "Engineered Promoters for Potent Transient Overexpression," PLOS ONE (2016), 11(2), pp. 1-19 (19 pages). Federici, T. et al., "Robust Spinal Motor Neuron Transduction Following Intrathecal Delivery of AAV9 in Pigs," Gene Therapy, vol. 19 (2012), pp. 852-859 (8 pages).

Fernandes, M. J. G. et al., "Identification of Candidate Active Site Residues in Lysosomal Beta-Hexosaminidase A*," J. Biol Chem., vol. 272, No. 2 pp. 814-820, ISSN 1083-351X (http://www.jbc.org/content/272/2/814.long) Jan. 10, 1997 (7 pages).

Fitzgerald, Peter C. et al., "Comparative Genomics of *Drosophila* and Human Core Promoters," Genome Biology (2006), vol. 7, Issue 7, Article R53, 22 pages.

Fitzsimons, Helen L. et al., "Promoters and Regulatory Elements that Improve Adeno-Associated Virus Transgene Expression in the Brain," Methods (2002), vol. 28, pp. 227-236 (10 pages).

Folch, Jordi et al., "A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues," J. Biol. Chem., vol. 226 (1957), pp. 497-509 (13 pages).

Foust, Kevin D. et al., "Intravascular AAV9 Preferentially Targets Neonatal Neurons and Adult Astrocytes," Nature Biotechnology (2009), vol. 27, No. 1, pp. 59-65 (7 pages).

Fu, Haiyan et al., "Self-Complementary Adeno-Associated Virus Serotype 2 Vector: Global Distribution and Broad Dispersion of AAV-Mediated Transgene Expression in Mouse Brain," Molecular Therapy (2003), vol. 8, No. 6, pp. 911-917 (7 pages).

Gabathuler, Reinhard "Approaches to Transport Therapeutic Drugs Across the Blood-Brain Barrier to Treat Brain Diseases," Neurobiology of Disease, vol. 37 (2010), pp. 48-57 (10 pages). Gray, Steven J. "Gene Therapy and Neurodevelopmental Disor-

Gray, Steven J. Gene Therapy and Neurodeveropmental Disorders," Neuropharmacology, vol. 68 (2013), pp. 136-142 (7 pages). Gray, Steven J. et al., "Optimizing Promoters for Recombinant Adeno-Associated Virus-Mediated Gene Expression in the Peripheral and Central Nervous System Using Self-Complementary Vectors," Human Gene Therapy (2011), vol. 22, No. 9, pp. 1143-1153 (11 pages).

Gray, Steven J. et al., "Preclinical Differences of Intravascular AAV9 Delivery to Neurons and Glia: A Comparative Study of Adult Mice and Nonhuman Primates," Molecular Therapy, vol. 19, No. 6 (Jun. 2011), pp. 1058-1069 (12 pages).

Guidotti, J. É. et al., "Adenoviral Gene Therapy of the Tay-Sachs Disease in Hexosaminidase A-Deficient Knock-Out Mice," Human Molecular Genetics, vol. 8, No. 5 (1999) pp. 831-838 (8 pages). Guo, Z. S. et al., "Gene Transfer: The Challenge of Regulated Gene Expression," Trends in Molecular Medicine (2008), vol. 14, No. 9, pp. 410-418 (9 pages).

Hou, Yongmin et al., "A Pro Ser Substitution in the Beta-Subunit of Beta-Hexosaminidase A Inhibits a-Subunit Hydrolysis of GM2 Ganglioside, Resulting in Chronic Sandhoff Disease," The Journal of Biological Chemistry, vol. 273, No. 33 (Aug. 14, 1998), pp. 21386-21392 (7 pages).

"International Search Report and Written Opinion," for PCT Application No. PCT/IB2015/001208, dated Dec. 4, 2015 (15 pages). Juven-Gershon, Tamar et al., "Rational Design of a Super Core Promoter that Enhances Gene Expression," Nature Methods (2006), vol. 3, No. 11, pp. 917-922 (6 pages).

Juven-Gershon, Tamar et al., "Regulation of Gene Expression via the Core Promoter and the Basal Transcriptional Machinery," Developmental Biology (2010), vol. 339, pp. 225-229 (5 pages). Juven-Gershon, Tamar et al., "The RNA Polymerase II Core Promoter—The Gateway to Transcription," Current Opinion in Cell Biology (2008), vol. 20, pp. 253-259 (7 pages).

Karumuthil-Melethil, Subha et al., "Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary AAV for the Treatment of Tay-Sachs Disease," Human Gene Therapy (2016), pp. 1-32 (32 pages).

Kuegler, S. et al., "Differential Transgene Expression in Brain Cells In Vivo and In Vitro from AAV-2 Vectors with Small Transcriptional Control Units," Virology (2003), vol. 311, No. 1, pp. 89-95 (7 pages).

Lacorazza, H. D. et al., "Expression of Human Beta-Hexosaminidase a-Subunit Gene (the Gene Defect of Tay-Sachs Disease) In Mouse Brains Upon Engraftment of Transduced Progenitor Cells," Nature Medicine, vol. 2, No. 4 (Apr. 1996), pp. 424-429 (6 pages).

Lemieux, M. J. et al., "Crystallographic Structure of Human Beta-Hexosaminidase A: Interpretation of Tay-Sachs Mutations and Loss of GM2 Ganglioside Hydrolysis," J. Mol. Biol., vol. 359 (2006) pp. 913-929 (17 pages).

Lim, Chin Y. et al., "The MTE, A New Core Promoter Element for Transcription by RNA Polymerase II," Genes & Development (2004), vol. 18, pp. 1606-1617 (12 pages).

Lukashchuk, Vera et al., "AAV9-Mediated Central Nervous System-Targeted Gene DeliveryVia Cisterna Magna Route in Mice," Molecular Therapy Methods & Clinical Development (2016), 3:15055, pp. 1-10 (10 pages).

Mahuran, Don J. "Characterization of Human Placental Beta-Hexosaminidase 12," The Journal of Biological Chemistry, vol. 265, No. 12 (Apr. 25, 1990), pp. 6794-6799 (8 pages).

Mahuran, Don J. et al., "The Biochemistry of HEXA and HEXB Gene Mutations Causing GM2 Gangliosidosis," Biochim Biophys Acta, vol. 1096 (1991), pp. 87-94 (8 pages).

Maier, Timm et al., "The X-Ray Crystal Structure of Human Beta-Hexosaminidase B Provides New Insights into Sandhoff Disease," J. Mol. Biol., vol. 328 (2003), pp. 669-681 (13 pages).

Mark, Brian L. et al., "Crystal Structure of Human Beta-Hexosaminidase B: Understanding the Molecular Basis of Sandhoff and Tay-Sachs Disease," J. Mol. Biol. vol. 327, (2003), pp. 1093-1109 (17 pages).

Martino, S. et al., "A Direct Gene Transfer Strategy Via Brain Internal Capsule Reverses the Biochemical Defect in Tay-Sachs Disease," Human Molecular Genetics, vol. 14, No. 15 (2005), pp. 2113-2123 (11 pages).

Maston, Glenn A. et al., "Transcriptional Regulatory Elements in the Human Genome," Annual Review of Genomics and Human Genetics (2006), vol. 7, pp. 29-59 (31 pages).

Matsuoka, K et al., "Therapeutic Potential of Intracerebroventricular Replacement of Modified Human Beta-Hexosaminidase B for GM2 Gangliosidosis.," Mol Ther. vol. 19,

(56) References Cited

OTHER PUBLICATIONS

No. 6, pp. 1017-1024, ISSN 1525-0024 (http://www.nature.com/mt/journal/v19/n6/full/mt201127a.html) Apr. 12, 2011 (8 pages). Mccarty, D M. et al., "Adeno-Associated Virus Terminal Repeat (TR) Mutant Generates Self-Complementary Vecotrs to Overcome the Rate-Limiting Step to Transduction In Vivo," Gene Therapy (2003), vol. 10, No. 26, pp. 2112-2118 (7 pages).

Mccarty, D. M. et al., "Self-Complementary Recombinant Adeno-Associated Virus (scAAV) Vectors Promote Efficient Transduction Independently of DNA Synthesis," Gene Therapy (2001), vol. 8, No. 16, pp. 1248-1254 (7 pages).

Mccarty, Douglas M. et al., "Self-Complementary AAV Vectors; Advances and Applications," Molecular Therapy (2008), vol. 16, No. 10, pp. 1648-1656 (9 pages).

Mules, Emilie H. et al., "Six Novel Deleterious and Three Neutral Mutations in the Gene Encoding the a-Subunit of Hexosaminidase A in Non-Jewish Individuals," Am. J. Hem. Genet., vol. 50, (1992), pp. 834-841 (8 pages).

Nathanson, Jason L. et al., "Short Promoters in Viral Vectors Drive Selectivbe Expression in Mammalian Inhibitory Neurons, but Do Not Restrict Activity to Specific Inhibitory Cell-Types," Frontiers in Neural Circuits (2009), Volum3 3, Article 19, pp. 1-24 (24 pages). Norflus, Francine et al., "Promoters for the Human Beta-Hexosaminidase Genes, HEXA and HEXB," DNA and Cell Biology (1996), vol. 15, No. 2, pp. 89-97 (10 pages).

Ohler, Uwe et al., "Computational Analysis of Core Promoters in the *Drosophila* Genome," Genome Biology (2002), vol. 3, No. 12, pp. 1-12 (12 pages).

Osmon, Karlaina J. et al., "Systemic Gene Transfer of a Hexosaminidase Variant Using a scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice," Human Gene Therapy (2016), pp. 1-23 (23 pages).

Perry, Laura C. et al., "New Approaches to Prediction of Immune Responses to Therapeutic Proteins During Preclinical Development," Drugs R D, vol. 9, No. 6 (2008) pp. 385-396 (12 pages). Samaranch, Lluis et al., "AAV9-Mediated Expression of a Non-Self Protein in Nonhuman Primate Central Nervous System Triggers Widespread Neuroinflammation Driven by Antigen-Presenting Cell Transduction," Molecular Therapy, vol. 22, No. 2 (Feb. 2014), pp. 329-337 (9 pages).

Sandelin, Albin et al., "Mammalian RNA Polymerase II Core Promoters: Insights from Genome-Wide Studies," Nature Reviews Genetics (2007), vol. 8, pp. 424-436 (13 pages).

Sands, Mark S. et al., "Gene Therapy for Lysosomal Storage Diseases," Molecular Therapy (2006), vol. 13, No. 5, pp. 839-849 (11 pages).

Schorpp, Marina et al., "The Human Ubiquitin C Promoter Directs High Ubiquitous Expression of Transgenese in Mice," Nucleic Acids Research (1996), vol. 24, No. 9, pp. 1787-1788 (2 pages). Sharma, Rohita et al., "A Single Site in Human Beta-Hexosaminidase A Binds Both 6-Sulfate-Groups on Hexosamines and the Sialic Acid Moiety of GM2 Ganglioside," Biochim Biophys Acta, vol. 1637 (2003), pp. 113-118 (6 pages).

Sharma, Rohita et al., "Identification of the 6-Sulfate Binding Site Unique to a-Subunit-Containing Isozymes of Human Beta-Hexosaminidase," Biochemistry, vol. 40 (2001), pp. 5440-5446 (7 pages).

Shevtsova, Z. et al., "Promoters and Serotypes: Targeting of Adeno-Associated Virus Vectors for Gene Transfer in the Rat Central Nervous System In Vitro and In Vivo," Experimental Physiology (2005), 90 (1), pp. 53-59 (7 pages).

Sinici, I et al., "In Cellulo Examination of a Beta-Alpha Hybrid Construct of Beta-Hexosaminidase A Subunits, Reported to Interact with the GM2 Activator Protein and Hydrolyze GM2 Ganglioside," (http://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0057908). vol. 8, No. 3, pp. 1-8, ISSN 1932-6203 Mar. 4, 2013 (8 pages).

Sinici, Incilay et al., "Comparison of HCMV IE and EF-1x Promoters for the Stable Expression of Beta-Subunit of Hexosaminidase in CHO Cell Lines," Biochemical Genetics (2006), vol. 44, Nos. 3/4, pp. 173-180 (8 pages).

Smiljanic-Georgijev, Natasha et al., "Characterization of the Affinity of the GM2 Activator Protein for Flycolipids by a Fluorescence Dequenching Assay," Biochim Biophys Acta, vol. 1339 (1997) pp. 192-202 (11 pages).

Spencer, Brian J. et al., "Targeted Delivery of Proteins Across the Blood-Brain Barrier," Proc Natl Acad Sci USA, vol. 104, No. 18 (May 1, 2007), pp. 7594-7599 (6 pages).

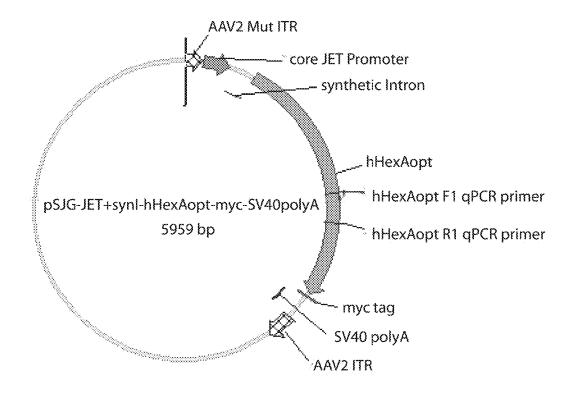
Theisen, Joshua W. et al., "Three Key Subregions Contribute to the Function of the Downstream RNA Polymerase II Core Promoter," Molecular and Cellular Biology (2010), vol. 30, No. 14, pp. 3471-3479 (9 pages).

Tornoe, Jens et al., "Generation of a Synthetic Mammalian Promoter Libraryby Modification of Sequences Spacing Transcription Factor Binding Sites," Gene (2002), vol. 297, pp. 21-32 (12 pages). Tropak, Michael B. et al., "A Sensitive Fluorescence-Based Assay for Monitoring GM2 Ganglioside Hydrolysis in Live Patient Cells and Their Lysates," Glycobiology, vol. 20, No. 3 (2010), pp. 356-365 (10 pages).

Tropak, Michael B. et al., "Construction of a Hybrid β-Hexosaminidase Subunit Capable of Forming Stable Homodimers that Hydrolyze GM2 Ganglioside In Vivo," Molecular Therapy—Methods & Clinical Development 3, Article No. 15057 (2016), doi: 10.1038/mtm.2015.57 (15 pages).

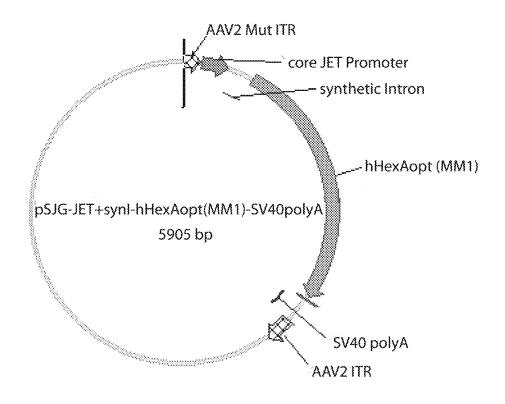
Tropak, Michael B. et al., "Pharmacological Enhancement of Beta-Hexosaminidase Activity in Fibroblasts from Adult Tay-Sachs and Sandhoff Patients," The Journal of Biological Chemistry, vol. 279, No. 14 (Apr. 2, 2004), pp. 13478-13487 (10 pages).

Walia, Jagdeep S. et al., "Long-Term Correction of Sandhoff Disease Following Intravenous Delivery of rAAV9 to Mouse Neonates," Molecular Therapy (2015), vol. 23, No. 3, pp. 414-422 (9 pages).


Wang, C. Y. et al., "Improved Neuronal Transgene Expression from and AAV-2 Vector with a Hybrid CMV Enhancer/PDGF-Beta Promoter," The Journal of Gene Medicine (2005), vol. 7, pp. 945-955 (11 pages).

Wright, Christine S. et al., "Crystal Structure of Human GN2-Activator Protein with a Novel Beta-Cup Topology," J. Mol. Biol, vol. 304 (2000), pp. 411-422 (12 pages).
Wu, Zhijian et al., "Effect of Genome Size on AAV Vector Pack-

Wu, Zhijian et al., "Effect of Genome Size on AAV Vector Packaging," Molecular Therapy (2010), vol. 18, No. 1, pp. 80-86 (7 pages).


Yew, Nelson S. et al., "CpG-Depleted Plasmid DNA Vectors with Enhanced Safety and Long-Term Gene Expression In Vivo," Molecular Therapy (2002), vol. 5, No. 6, pp. 731-738 (8 pages). "International Preliminary Report on Patentability," for PCT Application No. PCT/US2016/032496 dated Nov. 30, 2017 (8 pages).

* cited by examiner

pSJG-JET-synl-hHexAopt-myc-SV40pA
mutant AAV2 ITR (promoting self-complementary)
core JET promoter
synthetic intron
Kozak Consensus Sequence
optimized human HexA coding sequence (not
including STOP codon)
myc epitope tag
stop codon x2
SV40 polyadenylation signal
AAV2 ITR (WT)

FIG. 1

pSJG-JET-synl-hHexAopt(MM1)-SV40pA
mutant AAV2 ITR (promoting self-complementary)
core JET promoter
synthetic intron
Kozak Consensus Sequence
Optimized human HexAopt(MM1) coding sequence for
HEXM
stop codon
SV40 polyadenylation signal
AAV2 ITR (WT)

FIG. 2

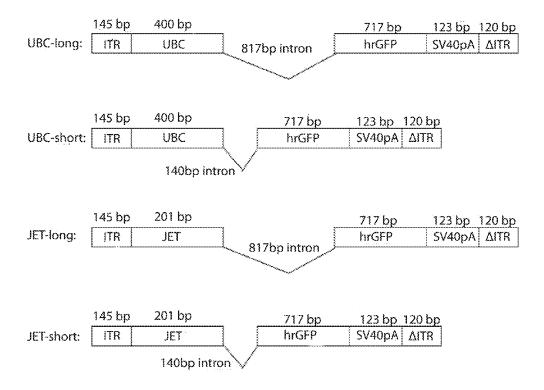


FIG. 3

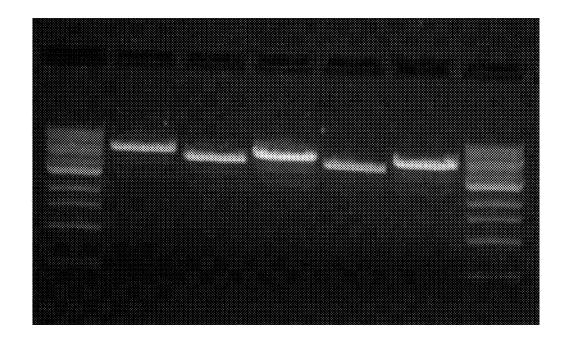


FIG. 4

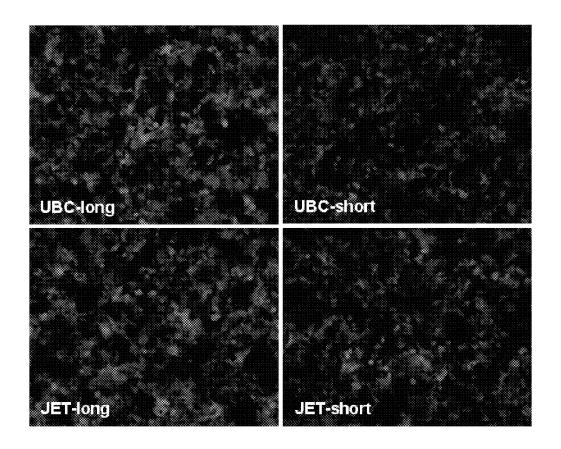


FIG. 5

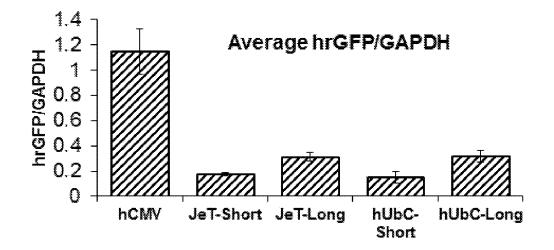
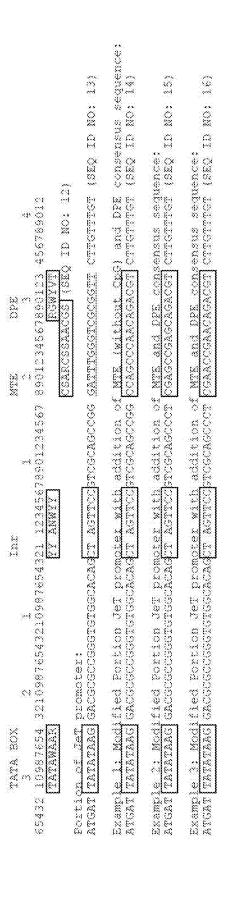



FIG. 6

<u>U</u>

POLYNUCLEOTIDES, VECTORS AND METHODS FOR INSERTION AND EXPRESSION OF TRANSGENES

This application claims the benefit of U.S. Provisional ⁵ Application No. 62/162,199, filed May 15, 2015, the content of which is herein incorporated by reference in its entirety.

REFERENCE TO SEQUENCE LISTING

This application is being filed electronically via EFS-Web and includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled "seqlisting_ST25.txt" created on May 3, 2016, and having a size of 32 KB. The sequence listing contained in this .txt file is part of the specification and is incorporated herein by reference in its entirety.

FIELD

Embodiments herein relate to polynucleotides, vectors and methods for the insertion and expression of transgenes.

BACKGROUND

Genetic disorders, such as those caused by the absence of, or a defect in, a desirable gene (loss of function) or expression of an undesirable or defective gene or (gain of function), can lead to a variety of disease states.

As an example, GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 gangliosides (GM2). Two of these are due to the deficiency of one of 2 similar but non-identical subunits that comprise heterodimeric β -hexosaminidase A (HexA) which hydrolyzes GM2. Mutations in the α -subunit (encoded by HEXA) of the enzyme HexA lead to Tay-Sachs disease (TSD), wherein mutations in the β -subunit (encoded by HEXB) lead to Sandhoff disease (SD). In these diseases, the malfunctioning protein is unable to play its role in cleaving GM2 ganglioside, whose accumulation within the 40 neurons of the central nervous system is ultimately toxic. The resulting neuronal death induces the primary symptoms of the disease including motor impairment, seizures, and sensory impairments.

Depending on the specific condition, approaches to treating genetic disorder diseases can include dietary changes or replacement of the particular enzyme that is missing. For some conditions, limiting certain substances in the diet can help prevent the buildup of potentially toxic substances that are normally broken down by the missing or defective enzyme. In some cases, enzyme replacement therapy can help compensate for the enzyme shortage. However, diet modification only works for some diseases. Intravenous enzyme replacement therapy generally requires repeated infusions and does not adequately distribute to all tissues requiring enzyme enhancement such as, for some lysosomal diseases, the central nervous system ("CNS").

A newer approach to treating such diseases is gene transfer based therapy wherein a transgene that can ameliorate the symptoms of the disease is inserted into the genetic 60 material of the patient. For diseases that are caused by the expression of a deleterious protein, such as Huntington's disease or myotonic dystrophy, gene transfer based therapy could potentially also be used wherein a transgene codes for a polynucleotide that could decrease the expression of the 65 deleterious protein or RNA and ameliorate the symptoms of the disease.

2

SUMMARY

Embodiments herein include polynucleotides, vectors and methods for the insertion and expression of transgenes. In an embodiment, a polynucleotide is included. The polynucleotide can include a JeT promoter or variant thereof, an intron sequence less than 400 bases in length, and a polynucleotide sequence encoding a polypeptide or protein operatively linked to the promoter.

In an embodiment, a recombinant vector is included. The recombinant vector can include a JeT promoter or variant thereof, an intron sequence less than 400 bases in length, and a polynucleotide sequence encoding a polypeptide or protein operatively linked to the promoter.

In an embodiment, a transgene expression system is included. The transgene expression system can include a plasmid comprising DNA encoding a transcription unit comprising a transgene operably linked to a JeT promoter and an intron sequence of less than 400 bases in length.

In an embodiment, a method of treating a mammal for a lysosomal storage disease is included. The method can include providing an adeno-associated virus (AAV) vector, the vector comprising a heterologous polynucleotide encoding a β -hexosaminidase protein, a subunit thereof, or a variant thereof, wherein the heterologous polynucleotide sequence is operably linked to a JeT promoter and an intron sequence less than 400 bases in length; and administering an amount of the AAV vector to the mammal wherein the β -hexosaminidase protein, subunit thereof, or variant thereof is expressed in the mammal.

This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope herein is defined by the appended claims and their legal equivalents.

BRIEF DESCRIPTION OF THE FIGURES

Aspects may be more completely understood in connection with the following drawings, in which:

FIG. 1 is a diagram of an exemplary vector plasmid in accordance with various embodiments herein.

FIG. 2 is a diagram of an exemplary vector plasmid in accordance with various embodiments herein.

FIG. 3 is shows schematics of vectors used for example 3 herein.

FIG. 4 is a picture of an agarose gel after electrophoresis of plasmid DNA after restriction endonuclease digestion as described in example 3 herein.

FIG. 5 shows images taken using fluorescence microscopy of hrGFP protein expression.

FIG. 6 is a graph showing hrGFP expression as normalized to GAPDH expression in a real-time PCR assay for different promoters.

FIG. 7 shows modifications of a JeT promoter in accordance with various embodiments herein.

While embodiments are susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and will be described in detail. It should be understood, however, that the scope herein is not limited to the particular embodiments

described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope herein.

DETAILED DESCRIPTION

The embodiments described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled 10 in the art can appreciate and understand the principles and practices.

As described above, a newer approach to treating genetic disorders is gene transfer based therapy. Adeno-associated virus (AAV) vectors are useful for gene transfer based 15 therapy. However, the DNA packaging limitation of AAV imposes a major constraint on the genetic engineering of an AAV vector. Recent studies have demonstrated that the production yield of AAV vectors is significantly reduced when the DNA size is increased above the wild-type genome length (approximately 4.7 kilobases, kb). For a large transgene, this size limitation is a substantial constraint in the design of an AAV vector. The HEXA gene, has a length of 1590 nucleotides, and therefore its length places constraints on AAV vector design. Because of the limited DNA packaging in AAV, the regulatory sequence needs to be very short.

It has been generally observed that the use of AAV vectors already containing dual-strand DNA, also called selfcomplementary AAV or scAAV, provides significantly 30 greater transduction efficiency than AAV vectors utilizing ssDNA. As such, it is desirable for the vector to be selfcomplementary. The major disadvantage of using scDNA in an AAV construct is that it that the maximum length of the therapeutic gene is reduced by approximately half because 35 of the need to include its complementary sequence. For example, the ssAAV vector sequence length, minus the two 145 nucleotide ITRs, is limited to approximately 4.4 kb. This 4.4 kb DNA sequence length must include the transgene, the associated promoter/intron, and a polyadenylation 40 tail (pA). When using self-complementary constructs, this same 4.4 kb limit must include the transgene and its complementary sequence, the promoter/intron and its complement, the pA and its complement, and an additional ITR. Considering this extra ITR has a length of approximately 0.1 kb, the 45 total sequence length of the transgene, promoter/intron, and pA must be kept shorter than approximately 2.15 kb. Therefore, using a 1.6 kb transgene, the promoter/intron and the pA must have a total sequence length of less than only 0.55 kb in order to keep the total DNA sequence length less than 50 the wildtype AAV DNA sequence length of 4.7 kb.

In addition, the use of an intron in combination with the JeT promoter can improve the expression level over what might be achieved without such an intron. While the degree of expression level improvement can, in some instances, 55 vary with the length of the intron, relatively short intron sequences can be desirable because of sufficient improvements to expression levels while still being consistent with size constraints associated with certain vectors such as those discussed above.

In an embodiment, a self-complimentary polynucleotide is included having a JeT promoter or variant thereof, an intron sequence less than 400 bases in length, and a polynucleotide sequence encoding a polypeptide or protein operatively linked to the promoter.

As used term, the term "operable linkage" or "operably linked" refers to a physical or functional juxtaposition of the

4

components so described as to permit them to function in their intended manner. In the example of an expression control element in operable linkage with a polynucleotide, the relationship is such that the control element modulates expression of the nucleic acid. More specifically, for example, two DNA sequences operably linked means that the two DNAs are arranged (cis or trans) in such a relationship that at least one of the DNA sequences is able to exert a physiological effect upon the other sequence.

The term "isolated," when used as a modifier of a composition, means that the compositions are made by the hand of man or are separated, completely or at least in part, from their naturally occurring in vivo environment. Generally, isolated compositions are substantially free of one or more materials with which they normally associate with in nature, for example, one or more protein, nucleic acid, lipid, carbohydrate, cell membrane. The term "isolated" does not exclude alternative physical forms of the composition, such as fusions/chimeras, multimers/oligomers, modifications (e.g., phosphorylation, glycosylation, lipidation) or derivatized forms, or forms expressed in host cells produced by the hand of man.

The terms "polynucleotide" and "nucleic acid" are used interchangeably herein to refer to all forms of nucleic acid, oligonucleotides, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Polynucleotides include genomic DNA, cDNA and anti sense DNA, and spliced or unspliced mRNA, rRNA, tRNA and inhibitory DNA or RNA (RNAi, e.g., small or short hairpin (sh)RNA, micro-RNA, small or short interfering (si)RNA, trans-splicing RNA, or antisense RNA). Polynucleotides include naturally occurring, synthetic, and intentionally altered or modified polynucleotides as well as analogues and derivatives. Polynucleotides can be single, double, or triplex, linear or circular, and can be of any length.

A "heterologous" polynucleotide, as an example, can refer to a polynucleotide inserted into a vector for purposes of vector-mediated transfer/delivery of the polynucleotide into a cell. Heterologous polynucleotides are typically distinct from nucleic acid specific to the vector itself. Once transferred/delivered into the cell, a heterologous polynucleotide, can be expressed (e.g., transcribed, and translated if appropriate).

The "polypeptides", "proteins" and "peptides" encoded by the "polynucleotide sequences," can include full-length native sequences, as with naturally occurring proteins, as well as functional subsequences, modified forms or sequence variants so long as the subsequence, modified form or variant retains some degree of the desired functionality, such as the functionality of the full-length protein.

Polynucleotides, polypeptides and subsequences thereof can include modified and variant forms. As used herein, the terms "modify" or "variant" and grammatical variations thereof, mean that a polynucleotide, polypeptide or subsequence thereof deviates from a reference sequence. Aspects herein include naturally and non-naturally occurring variants. Modified and variant sequences may have substantially the same, greater or less activity or function than a reference sequence, but can at least retain partial activity or function of the reference sequence.

Non-limiting examples of modifications include one or more amino acid substitutions (e.g., 1-3, 3-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-40, 40-50, or more residues), additions (e.g., insertions or 1-3, 3-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-40, 40-50, or more residues) and deletions (e.g., subsequences or fragments) of a reference sequence. In particular embodiments, a modified or variant sequence

02 10,010,01

retains at least part of a function or an activity of unmodified sequence. Such modified forms and variants can have less than, the same, or greater, but at least a part of, a function or activity of a reference sequence, for example, as described herein.

5

A variant can have one or more non-conservative or conservative amino acid sequence differences or modifications, or both. A "conservative substitution" is the replacement of one amino acid by a biologically, chemically or structurally similar residue. Biologically similar means that 10 the substitution does not destroy a biological activity. Structurally similar means that the amino acids have side chains with similar length, such as alanine, glycine and serine, or a similar size. Chemical similarity means that the residues have the same charge or are both hydrophilic or hydropho- 15 bic. Particular examples include the substitution of one hydrophobic residue, such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic for aspartic acids, or glutamine for aspara- 20 gine, serine for threonine, and the like. Particular examples of conservative substitutions include the substitution of a hydrophobic residue such as isoleucine, valine, leucine or methionine for another, the substitution of a polar residue for another, such as the substitution of arginine for lysine, 25 glutamic for aspartic acids, or glutamine for asparagine, and the like. For example, conservative amino acid substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; 30 lysine, arginine; and phenylalanine, tyrosine. A "conservative substitution" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid.

Aspects herein can include gene and protein variants (e.g., of polynucleotides encoding proteins described herein) that 35 retain one or more biological activities (e.g., hydrolyzing GM2 gangliosides, either alone or in combination with other proteins). Such variants of proteins or polypeptides include proteins or polypeptides which have been or may be modified using recombinant DNA technology such that the protein or polypeptide possesses altered or additional properties, for example, variants conferring enhanced protein stability in plasma or enhanced activity of the protein. Variants can differ from a reference sequence, such as naturally occurring polynucleotides, proteins or peptides.

At the nucleotide sequence level, a naturally and nonnaturally occurring variant gene will typically be at least about 50% identical, more typically about 70% identical, even more typically about 80% identical (90% or more identity) to the reference gene. At the amino acid sequence 50 level, a naturally and non-naturally occurring variant protein will typically be at least about 70% identical, more typically about 80% identical, even more typically about 90% or more identity to the reference protein, although substantial regions of non-identity are permitted in non-conserved regions (e.g., 55 less, than 70% identical, such as less than 60%, 50% or even 40%). In other embodiments, the sequences have at least 60%, 70%, 75% or more identity (e.g., 80%, 85% 90%, 95%, 96%, 97%, 98%, 99% or more identity) to a reference sequence. Procedures for the introduction of nucleotide and 60 amino acid changes in a polynucleotide, protein or polypeptide are known to the skilled artisan (see, e.g., Sambrook et al, (1989)).

The term "identity," "homology" and grammatical variations thereof, mean that two or more referenced entities are 65 the same, when they are "aligned" sequences. Thus, by way of example, when two polypeptide sequences are identical,

they have the same amino acid sequence, at least within the referenced region or portion. Where two polynucleotide sequences are identical, they have the same polynucleotide sequence, at least within the referenced region or portion. The identity can be over a defined area (region or domain) of the sequence. An "area" or "region" of identity refers to a portion of two or more referenced entities that are the same. Thus, where two protein or nucleic acid sequences are identical over one or more sequence areas or regions they share identity within that region. An "aligned" sequence

share identical over one or more sequence areas or regions they share identity within that region. An "aligned" sequence refers to multiple polynucleotide or protein (amino acid) sequences, often containing corrections for missing or additional bases or amino acids (gaps) as compared to a reference sequence.

The identity can extend over the entire sequence length or a portion of the sequence. In particular aspects, the length of the sequence sharing the percent identity is 2, 3, 4, 5 or more contiguous polynucleotide or amino acids, e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, etc. contiguous amino acids. In additional particular aspects, the length of the sequence sharing identity is 20 or more contiguous polynucleotide or amino acids, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, etc. contiguous amino acids. In further particular aspects, the length of the sequence sharing identity is 35 or more contiguous polynucleotide or amino acids, e.g., 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 47, 48, 49, 50, etc., contiguous amino acids. In yet further particular aspects, the length of the sequence sharing identity is 50 or more contiguous polynucleotide or amino acids, e.g., 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, 95-100, 100-110, etc. contiguous polynucleotide or amino acids.

The terms "homologous" or "homology" mean that two or more referenced entities share at least partial identity over a given region or portion. "Areas, regions or domains" of homology or identity mean that a portion of two or more referenced entities share homology or are the same. Thus, where two sequences are identical over one or more sequence regions they share identity in these regions. "Substantial homology" means that a molecule is structurally or functionally conserved such that it has or is predicted to have at least partial structure or function of one or more of the structures or functions (e.g., a biological function or activity) of the reference molecule, or relevant/corresponding region or portion of the reference molecule to which it shares homology.

The extent of identity (homology) between two sequences can be ascertained using a computer program and mathematical algorithm. Such algorithms that calculate percent sequence identity (homology) generally account for sequence gaps and mismatches over the comparison region or area. For example, a BLAST (e.g., BLAST 2.0) search algorithm (see, e.g., Altschul et al., J. Mol. Biol. 215:403 (1990), publicly available through NCBI) has exemplary search parameters as follows: Mismatch -2; gap open 5; gap extension 2. For polypeptide sequence comparisons, a BLASTP algorithm is typically used in combination with a scoring matrix, such as PAM 100, PAM 250, BLOSUM 62 or BLOSUM 50. FASTA (e.g., FASTA2 and FASTA3) and SSEARCH sequence comparison programs are also used to quantitate extent of identity (Pearson et al., Proc. Natl. Acad. Sci. USA 85:2444 (1988); Pearson, Methods Mol. Biol. 132:185 (2000); and Smith et al., J. Mol. Biol. 147: 195 (1981)). Programs for quantitating protein structural similarity using Delaunay-based topological mapping have also been developed (Bostick et al., Biochem Biophys Res Commun. 304:320 (2003)).

As used herein, the term "recombinant," such as in the context of recombinant polynucleotides and polypeptides, means that the compositions have been manipulated (i.e., engineered) in a fashion that generally does not occur in nature. For example, a recombinant AAV vector would be where a polynucleotide that is not normally present in the wild-type AAV is within the AAV particle and/or genome. For example, a particular example of a recombinant polynucleotide would be where a polynucleotide (e.g., gene) encoding a protein is cloned into a vector, with or without 5', 3' and/or intron regions that the gene is normally or not normally associated within the AAV genome.

The term "transgene" refers to a heterologous polynucleotide sequence that has been introduced into a cell or 15 organism. Transgenes can include any polynucleotide, such as a gene that encodes a polypeptide or protein, a polynucleotide that is transcribed into an inhibitory polynucleotide, or a polynucleotide that is not transcribed (e.g., lacks an expression control element, such as a promoter that drives 20 transcription). A cell or progeny thereof into which the transgene has been introduced is referred to as a "transformed cell", "transduced cell", or "transformant." In some cases, a transgene is included in progeny of the transformant or becomes a part of the organism that develops from the 25 cell. Accordingly, in some cases, a "transformed", "transduced" or "transfected" cell (e.g., in a mammal, such as a cell or tissue or organ cell), means a genetic change in a cell following incorporation of an exogenous molecule, for example, a polynucleotide or protein (e.g., a transgene) into 30 the cell. Thus, a "transfected", "transduced" or "transformed" cell is a cell, or progeny thereof, into which an exogenous molecule has been introduced, for example.

Particular non-limiting examples of polynucleotides encoding gene products (proteins) which are useful in accor- 35 dance with the invention include, but are not limited to: genes that comprise or encode β -hexosaminidase proteins, or subunits thereof, or variants thereof, that are useful for hydrolyzing GM2 ganglioside. By way of example, polynucleotides herein can encode Hex B, a homodimer of 40 β -subunits (encoded by the HEXB gene), or portions or variants thereof, Hex A, a heterodimer composed of a β and an α (encoded by the HEXA gene) subunit, or portions or variants thereof; GM2-activator protein (GM2AP), or portions or variants thereof, or the like. In some embodiments, 45 the polynucleotide encoding a polypeptide or protein can code for a polypeptide having the sequence of residues 89-529 of the α -subunit of Hex A (SEQ ID NO: 9) or conservative variants thereof, or can code for a polypeptide having at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 50 99% sequence identity to residues 89-529 of the α -subunit of Hex A (SEQ ID NO: 9) or conservative variants thereof.

Polynucleotide sequences in accordance with the invention can be inserted into a vector. The term "vector" refers 55 to a plasmid, virus (e.g., AAV) or other vehicle that can be manipulated by insertion or incorporation of a polynucleotide. Such vectors can be used for genetic manipulation (i.e., "cloning vectors"), to introduce/transfer polynucleotides into cells, and to transcribe or translate the inserted 60 polynucleotide in cells. A vector generally contains at least an origin of replication for propagation in a cell and expression control element(s) (e.g., a promoter). Control elements, including expression control elements such as promoters and enhancers, can be included within a vector to facilitate 65 proper transcription and/or appropriate translation. Exemplary promoters are described in greater detail below.

8

Expression control can be effected at the level of transcription, translation, splicing, message stability, etc. Typically, an expression control element that modulates transcription is juxtaposed near the 5' end of the transcribed polynucleotide (i.e., "upstream"). Expression control elements can also be located at the 3' end of the transcribed sequence (i.e., "downstream") or within the transcript (e.g., in an intron). Expression control elements can be located at a distance away from the transcribed sequence (e.g., 100 to 500, 500 to 1000, 2000 to 5000, 5000 to 10,000 or more nucleotides from the polynucleotide), even at considerable distances. Nevertheless, owing to the polynucleotide length limitations, for AAV vectors, such expression control elements will typically be within 1 to 1000 nucleotides from the polynucleotide.

Functionally, expression of the operably linked polynucleotide is at least in part controllable by the element (e.g., promoter) such that the element modulates transcription of the polynucleotide and, as appropriate, translation of the transcript. A specific example of an expression control element is a promoter, which is usually located 5' of the transcribed sequence. Another example of an expression control element is an enhancer, which can be located 5', 3' of the transcribed sequence, or within the transcribed sequence.

Many different viral vectors can be used. Viral vectors can include retroviruses, adenoviruses, herpes simplex virus, lentiviruses, and the like.

Adeno-associated virus (AAV) vectors are a particular type of vector for the delivery of genes in vivo. As used herein, the term "serotype" is a distinction used to refer to an AAV having a capsid that is serologically distinct from other AAV serotypes. Serologic distinctiveness is determined on the basis of the lack of cross-reactivity between antibodies to one AAV as compared to another AAV. Such cross-reactivity differences are usually due to differences in capsid protein sequences/antigenic determinants (e.g., due to VP1, VP2, and/or VP3 sequence differences of AAV serotypes). AAV serotype can include AAV1, AAV2. AAV3. AAV4, AAV5, AAV6, AAV7, AAV 8. AAV9, AAV10 or AAV11. In some embodiments, the AAV serotype is selected from 1, 2, 4, 5, 7, 8, 9, and Rh10, which have been shown to be effective in central nervous system (CNS) applications.

AAV vectors can be constructed using recombinant techniques that are known to the skilled artisan, to include one or more heterologous polynucleotide sequences flanked with functional AAV ITRs. Incorporation of a heterologous polynucleotide defines the AAV as a recombinant vector, or an "rAAV vector." Such vectors can have one or more of the wild type AAV genes deleted in whole or in part, for example, a rep and/or cap gene, but retain at least one functional flanking ITR sequence, as necessary for the rescue, replication, and packaging of the AAV particle. Thus, an AAV vector includes sequences required in cis for viral replication and packaging (e.g., functional ITRs).

Vectors including AAV vectors of the invention can include still additional nucleic acid elements. These elements include, without limitation one or more copies of an AAV ITR sequence, a promoter/enhancer element, a transcription termination signal, 5' or 3' untranslated regions (e.g., polyadenylation sequences) which flank a polynucleotide sequence, or all or a portion of an intron. Such elements also optionally include a transcription termination signal. A particular non-limiting example of a transcription termination signal.

Promoter:

Various promoters can be used with embodiments herein. Based on size constraints associated with the AAV vector discussed above, it can be advantageous to pick a relatively small promoter. In some embodiments, the promoter is 5 selected from the group consisting of RSV (329 bp), JeT (200 bp), and hUbC (397 bp) promoters. In various embodiments, the JeT promoter is used. The JeT promoter is a recombinant promoter with transcriptional activity comparable to a number of strong mammalian promoters. The JeT 10 promoter takes advantage of a unique combination of transcription factor binding sites resulting in transcriptional activity comparable to a number of strong mammalian promoters such as the simian virus 40 (SV40) and ubiquitin (UbC) promoters. The promoter consists of five key elements: (1) a TATA box (TATATAA); (2) a transcription initiation site (Inr) (CTAGTTC); (3) a CAT consensus sequence (CCAAT) in conjunction with (4) a CArG element (CCTTTTATGG) and finally, (5) four Sp1 transcription binding sites (GGGCGG) arranged in two tandems. The 20 CAT/CArG complex is also referred to as a Serum Response Element (SRE). Aspects of the JeT promoter are described in U.S. Pat. No. 6,555,674, the content of which is herein incorporated by reference.

The JeT promoter (SEQ ID NO: 1) or (SEQ ID NO: 2) 25 takes advantage of a unique combination of transcription factor binding sites resulting in transcriptional activity comparable to a number of strong mammalian promoters such as the simian virus 40 (SV40) and ubiquitin (UbC) promoters.

The promoter consists of five key elements: (1) a TATA box (TATATAA), (2) a transcription initiation site (Inr) (CTAGTTC), (3) a CAT consensus sequence (CCAAT) in conjunction with (4) a CArG element (CCTTTTATGG) (SEQ ID NO: 3) and finally, (5) four Sp1 transcription binding sites (GGGCGG) arranged in two tandems. The standard JeT promoter sequence is shown below:

10

A standard JeT promoter uses only transcription binding sites located upstream from the RNA Polymerase II initiation site (Inr). However, the inclusion of transcription factor binding elements downstream from the Inr can have a significant beneficial effect on the expression strength of a promoter. For example, the downstream promoter element (DPE) is often located from +28 to +32 (+33) and has a consensus of RGWYV(T) (using the IUPAC nucleotide code). The transcription factor II D (TFIID) binds cooperatively to the Inr and the DPE motifs.

A core downstream promoter element can also exist from +18 to +29 of the Inr initiation site, named the Motif Ten Element (MTE). The MTE has a role in binding the TFIID to the promoter. The MTE has a consensus sequence of CSARCSSAACGS (SEQ ID NO: 12) (using the IUPAC nucleotide code). See Lim C Y, Santoso B, Boulay T, Dong E, Ohler U, Kadonaga J T: The MTE, a new core promoter element for transcription by RNA polymerase II. *Genes Dev* 2004, 18(13):1606-1617.

In various embodiments herein, the JeT plus short intron promoter can be enhanced by substituting the JeT promoter sequence from +18 to +27 and from +28 to +33 from Inr A+1 with the consensus sequences of both MTE and DPE while minimizing CpG dinucleotides. This is illustrated in FIG. 7, which shows the promoter sequences from -36 to +42 relative to the transcription start site (Inr) for several examples of modified portions of JeT promoter sequences that can be used in embodiments. As such, in various embodiments herein a JeT promoter variant is included including the consensus sequences of the DPE or of both MTE and DPE.

An example is shown below (SEQ ID NO: 10) of a complete JeT Promoter sequence with the addition of a MTE/DPE consensus sequence and all CpG dinucleotides outside of the defined transcription factor binding elements replaced with CpA to avoid cytosine methylation. This sequence has 87% identity with SEQ ID NO: 1.

JeT promoter 195 bases	
(SEQ ID NO: 1) 1 GAATTCGGGC GGAGTTAGGG CGGAGCCAAT CAGCGTGCGC CGTTCCGAAA 50	
51 GTTGCCTTTT ATGGCTGGGC GGAGAATGGG CGGTGAACGC CGATGATTAT 100	
101 ATAAGGACGC GCCGGGTGTG GCACAGCTAG TTCCGTCGCA GCCGGGATTT 150	
151 GGGTCGCGGT TCTTGTTTGT GGATCCCTGT GATCGTCACT TGACA 195	
Another version of the JeT promoter is shown below: JeT promoter 192 bases	
(SEQ ID NO: 2)	
1 GAATTCGGGC GGAGTTAGGG CGGAGCCAAT CAGCGTGCGC CGTTCCGAAA 50	
51 GTTGCCTTTT ATGGCTGGGC GGAGAATGGG CGGTGAACGC CGATGATTAT 100	
101 ATAAGGACGC GCCGGGTGTG GCACAGCTAG TTCCGTCGCA GCCGGGATTT 150	
151 GGGTCGCGGT TCTTGTTTGT GGATCCCTGT GATCGTCACT TG 192	
Yet another version of the JeT promoter is shown below: JET promoter 187 bases	
(SEO ID NO: 8)	
1 CGGGCGGAGT TAGGGCGGAG CCAATCAGCG TGCGCCGTTC CGAAAGTTGC 50	
51 CTTTTATGGC TGGGCGGAGA ATGGGCGGTG AACGCCGATG ATTATATAAG 100	
101 GACGCGCCGG GTGTGGCACA GCTAGTTCCG TCGCAGCCGG GATTTGGGTC 150	
151 GCGGTTCTTG TTTGTGGATC CCTGTGATCG TCACTTG 187	

Modified JET promoter 195 bases

					(SEQ ID NO:	10)
1	GAATTCGGGC	GGAGTTAGGG	CGGAGCCAAT	CAGCATGCAC	CATTCCAAAA	5(
51	GTTGCCTTTT	ATGGCTGGGC	GGAGAATGGG	CGGTGAACAC	CAATGATTAT	100
101	ATAAGGACAC	ACCAGGTGTG	GCACAGCTAG	TTCCATCACA	GCCAGCCAGC	150
151	CCAACAGACG	TCTTGTTTGT	GGATCCCTGT	GATCATCACT	TGACA	195

In various embodiments, promoter CpG dinucleotides can be replaced. CpG dinucleotides within a promoter can undergo cytosine methylation, and over time, result in a diminished expression of the associated transgene. To avoid this impact on the gene expression, CpG dinucleotides, which are not specifically within a consensus transcription binding site element, can be changed to CpA. These changes are intended to improve the long-term expression from the promoter-intron. Other alternative promoter sequences, such as where the CpG dinucleotides are changed to TpG, are also included herein. As such, in various embodiments, one or more CpG dinucleotides, that are not within a consensus transcription binding site element, are modified to reduce or eliminate the number of CpG dinucleotides. In some embodiments, all CpG dinucleotides within the promoter, that are not within a consensus transcription binding site 25 element, are modified to reduce or eliminate the number of CpG dinucleotides.

In some embodiments, an alternative form of MTE can be used having two CpG dinucleotides in the consensus sequence. For example, alternative forms of MTE located at 30 +18 to +27 from the Inr A+1 transcription initiation site can include CGAGCCGAGC (SEQ ID NO: 17) or CGAAC-CGAAC (SEQ ID NO: 18). In some embodiments, nucleotides CT can be included at locations +16 and +17 from the Inr A+1. In various embodiments, the JeT promoter 35 sequence from -36 to +42 relative to the transcription start site (Inr) can be as shown in SEQ ID NOS: 13, 14, 15, or 16 of FIG. 7, or having 80%, 85%, 90%, 95%, 98% or 99% sequence identity thereto.

Following transcription of mRNA, the AUG codon indicates a translation initiation site that results in the first methionine amino acid of the expressed protein. The inclusion of ATG sequences within the promoter-intron that occurs following the transcription initiation site and before the intended translation initiation site can result in the translation of unintended amino acids and reduce the expression level of the intended protein. To prevent this occurrence, one or more (or all) of the in-frame or out-of-frame ATG sequences can be been modified. By way of example, "ATG" sequences can be changed to "ATA". Alternately, the "ATG" sequences can be changed to "GTG" or a combination of "ATA" and "GTG" or other triplets changes from "ATG". In various embodiments, those changes avoid and/or do not result in incorporating a CpG dinucleotide, per the potential issues with cytosine methylation discussed above.

In some embodiments, the intron element can be modified to enhance the expression level of the intended protein. By way of example, in some embodiments, in-frame and out-of-frame ATG start sites can be changed to ATA, for example, to avoid unintended initiation of translation prior to the transgene first methionine. In some embodiments, one or more in-frame and out-of-frame ATG start sites are changed to alternative nucleotides. In some embodiments, all in-frame and out-of-frame ATG start sites are changed to alternative nucleotides. An exemplary synthetic sequence (SEQ ID NO: 11) wherein in-frame and out-of-frame ATG start sites are replaced is as follows (this has 97% identity with SEQ ID NO: 4):

Synthetic Intron 140 bases

					(SEQ ID NO:	11)
1	GTAAGTCACT	GACTGTCTAT	ACCTGGGAAA	GGGTGGGCAG	GAGATAGGGC	50
51	AGTGCAGGAA	AAGTGGCACT	ATAAACCCTG	CAGCCCTAGG	AATACATCTA	100
101	GACAATTGTA	CTAACCTTCT	TCTCTTTCCT	CTCCTGACAG		140

In some embodiments, the promoter used with embodiments herein can have at least 60%, 65%, 70%, 75%, 80%, $_{50}$ 85%, 90%, 95%, or 98% sequence identity with SEQ ID NO: 1, 2, 8, or 10, while being non-naturally occurring. Intron:

Inclusion of an intron element can enhance expression 55 compared with expression in the absence of the intron element. The intron can be synthetic. An exemplary synthetic intron sequence is as follows:

In some embodiments, the intron can be 800 bases or less in length. In some embodiments, the intron can be 750 bases or less, 700 bases or less, 650 bases or less, 600 bases or less, 550 bases or less, 450 bases or less, 400 bases or less, 350 bases or less, 300 bases or less, 250 bases or less, 200 bases or less, or 150 bases or less in length.

In some embodiments, the intron used with embodiments herein can have at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 98% sequence identity with SEQ ID NO: 4 or 11, while being non-naturally occurring.

Synthetic intron 140 bases

```
(SEQ ID NO: 4)

1 GTAAGTCACT GACTGTCTAT GCCTGGGAAA GGGTGGGCAG GAGATGGGGC 50

51 AGTGCAGGAA AAGTGGCACT ATGAACCCTG CAGCCCTAGG AATGCATCTA 100

101 GACAATTGTA CTAACCTTCT TCTCTTTCCT CTCCTGACAG 140
```

The intron can be in various positions with respect to other components of the polynucleotide such as the promoter. In some embodiments, the promoter precedes the intron. However, in other embodiments, the intron can be contained in its entirety within the promoter. In some 5 embodiments, the intron can also be in the 3' poly A segment. In some embodiments, the intron can be within the coding sequence (e.g., portion coding for polypeptide or protein) of the gene.

Methods:

Methods herein can include treatment methods. In various embodiments, methods herein further include inhibiting, decreasing or reducing one or more adverse (e.g., physical) symptoms, disorders, illnesses, diseases or complications caused by or associated with the disease. In various embodi- 15 ments, a method of treating a mammal for a lysosomal storage disease is included. The method can include providing an adeno-associated virus (AAV) vector, the vector comprising a heterologous polynucleotide encoding a β-hexosaminidase protein, a subunit thereof, or a variant 20 thereof. The heterologous polynucleotide sequence can be operably linked to a JeT promoter, or a variation thereof, and an intron sequence less than 400 bases in length. The method can also include administering an amount of the AAV vector to the mammal wherein the β-hexosaminidase protein, sub- 25 unit thereof, or variant thereof is expressed in the mammal.

Compositions, methods and uses of the invention, can be administered in a sufficient or effective amount to a subject in need thereof. An "effective amount" or "sufficient amount" refers to an amount that provides, in single or 30 multiple doses, alone or in combination, with one or more other compositions (therapeutic agents such as a drug), treatments, protocols, or therapeutic regimens agents, a detectable response of any duration of time (long or short term), an expected or desired outcome in or a benefit to a 35 subject of any measurable or detectable degree or for any duration of time (e.g., for minutes, hours, days, months, years, or cured).

In some embodiments, a method of making a polynucleotide and/or vector is included herein. Polynucleotides and 40 polypeptides including modified forms can be made using various standard cloning, recombinant DNA technology, via cell expression or in vitro translation and chemical synthesis techniques. Purity of polynucleotides can be determined through sequencing, gel electrophoresis and the like. For 45 example, nucleic acids can be isolated using hybridization or computer-based database screening techniques. Such techniques include, but are not limited to: (1) hybridization of genomic DNA or cDNA libraries with probes to detect homologous nucleotide sequences; (2) antibody screening to 50 detect polypeptides having shared structural features, for example, using an expression library; (3) polymerase chain reaction (PCR) on genomic DNA or cDNA using primers capable of annealing to a nucleic acid sequence of interest; (4) computer searches of sequence databases for related 55 sequences; and (5) differential screening of a subtracted nucleic acid library.

Polynucleotides and polypeptides including modified forms can also be produced by chemical synthesis using methods known in the art, for example, an automated 60 synthesis apparatus (see, e.g., Applied Biosystems, Foster City, Calif.). Peptides can be synthesized, whole or in part, using chemical methods (see. e.g., Caruthers (1980). Nucleic Acids Res. Symp. Ser. 215; Horn (1980); and Banga. A. K., Therapeutic Peptides and Proteins, Formulation, Processing and Delivery Systems (1995) Technomic Publishing Co., Lancaster, Pa.). Peptide synthesis can be

14

performed using various solid phase techniques (see, e.g., Roberge Science 269:202 (1995); Merrifield, Methods Enzymol. 289:3(1997)) and automated synthesis may be achieved, e.g., using the ABI 431 A Peptide Synthesizer (Perkin Elmer) in accordance with the manufacturer's instructions.

Aspects may be better understood with reference to the following examples. These examples are intended to be representative of specific embodiments, but are not intended as limiting the overall scope of embodiments herein. Note that sequences herein including myc tags were included in the vector to aid in visualizing the distribution of the vector in the mice. The myc tag adds to the transgene length. In many embodiments it would not be used in clinical applications.

EXAMPLES

Example 1: Expression of Transgenes in CNS Tissue Using AAV Vector, JeT Promoter, and Synthetic Intron

A self-complementary (sc) AAV genome was designed with a JeT promoter and synthetic intron sequence (SEQ ID NO: 4) to allow packaging of an optimized hexosaminidase HEXA (SEQ ID NO: 5 and FIG. 1 illustrate a plasmid sequence that includes portions of what was included within the AAV genome). A similar scAAV genome was designed with the same JeT promoter and intron sequence to allow packaging of a hexosaminidase variant known as HEXM (SEQ ID NO: 6 and FIG. 2 illustrate a plasmid sequence that includes portions of what was included within the AAV genome). Finally, a scAAV genome was designed with the same JeT promoter and intron sequence to allow packaging of a reporter gene (GFP green fluorescent protein) (SEQ ID NO: 7). These scAAV genomes were packaged into scAAV9 (serotype 9) vectors and injected stereotaxically into 4 or 15 month old TSD mice (e.g., either scAAV with HEXA or scAAV with HEXM was injected) along with an identical titer of the scAAV9/GFP vector to track vector spread.

The mice were euthanized after 4 weeks and brain sections were subjected to IHC analysis against GFP and GM2. The effectiveness of the JeT promoter plus intron sequence in causing expression of the third transgene (GFP) was assessed by the observed tissue fluorescence. The effectiveness of the JeT promoter plus intron sequence for the first and second scAAV vectors in causing expression of either the first (HEXA) or second (HEXM) transgenes was assessed by clearance of GM2 within the injected region, compared to the contralateral brain hemisphere. Qualitatively, a marked reduction of GM2 was apparent in the areas of highest GFP expression. All three vectors were observed to be effective for expression of their respective transgenes.

Example 2: Expression of a Hexosaminidase Protein in Sandhoff Mice Using AAV Vector, JeT Promoter, and Synthetic Intron

Neonatal Sandhoff (beta deficient) mice were intravenously injected with a self-complementary vector (scAAV genome designed with a JeT promoter and a synthetic intron sequence (SEQ ID NO: 4) to allow packaging of a hexosaminidase variant known as HEXM—SEQ ID NO: 6 and FIG. 2 illustrate a plasmid sequence that includes portions of what was included within the AAV genome) for the expression of HexM at day 0-1. One cohort was monitored for 8 weeks and another cohort was monitored long-

term (>40 weeks) for biochemical, behavioral and molecular analyses. Through the enzymatic and GM2 ganglioside lipid analyses, it was observed that with a slight increase in enzyme activity, there is a significant increase in the clearance of GM2 gangliosides. On behavioral tests, the treated 5 mice outperform their knockout age matched controls. While the untreated controls die before the age of 15 weeks, treated animals have survived to more than 40 weeks. The molecular analyses reveal a uniform distribution of the vector between brain and spinal cord regions. The neonatal 10 delivery of this newly synthesized viral vector expressing HexM to the Sandhoff mice provided long-term correction of the disease. This example shows the effectiveness of the JeT promoter plus intron sequence in expressing the hexosaminidase transgene as assessed by the increased 15 enzyme activity and animal survival.

Example 3: UbC and JeT Promoter Evaluation

The objective of this example was to characterize the 20 expression of the hrGFP reporter gene from constructs containing one of two promoters (UbC or JeT) and one of two intron lengths (140 bp—SEQ ID NO: 4 or 817 bp).

Naturally occurring adeno-associated virus (AAV) contains a single stranded DNA genome. Once the virus infects 25 a cell complementary strands from different viruses must anneal or a complementary strand must be synthesized to create a stable molecule that can serve as a substrate for transcription. The need to anneal to a complementary strand or synthesize such strand reduces the overall transduction 30 efficiency. To overcome this, a double stranded, self-complementary (scAAV) vector can be generated. scAAV does not require second strand synthesis and allows for lower concentrations of scAAV to be used, thus increasing transduction efficiency. However, because of the self-complementary 35 nature of the viral genome the size of the expression cassette is more limited. Towards the goal of generating a scAAV production plasmid capable of expressing the HexA gene, the level of gene expression from the JeT and UbC promoters was characterized and how the length of an intron affects 40 the level of expression was evaluated.

Four mammalian expression plasmids were designed and constructed for these experiments. Standard molecular biology and PCR techniques were used to construct these expression vectors. These expression cassettes were cloned 45 into the backbone of the pBLUESCRIPT plasmid (Stratagene). In general, PCR was used to modify the ends of the DNA fragments allowing for subcloning into subsequent vectors. The UBC promoter, long intron and SV40 polyadenylation sequence were recovered from pUB6/V5-His A 50 (Invitrogen, cat. no. V250-01). Intron sequence (SEQ ID NO: 4) was used for the short synthetic intron. The sequence of the JeT promoter (SEQ ID NO: 2) was obtained from published literature (Gene 297 (2002) 21-32). The JeT promoter was generated using a PCR-based synthetic gene 55 production strategy (modified from Gene, 164 (1995) 49-53). Using this approach, the ends of the JeT promoter were modified using PCR methods to allow for subsequent cloning events. The hrGFP gene was recovered from pAAVhrGFP (Stratagene). Schematics of these vectors are shown 60 in FIG. 3 (note that the length of the JeT promoter was listed as 201 bp because sequences joining the JeT promoter to the ITR were included in the count).

Large scale plasmid DNA isolations were completed for each of these plasmids along with the pAAV-hrGFP plasmid 65 (CMV driven hrGFP). The plasmid DNA was quantified and the integrity assessed by restriction endonuclease digestion

followed by agarose gel electrophoresis. The results of this characterization are shown in FIG. 4. All plasmid were of the correct size and at similar concentrations.

16

These plasmids were transfected into HEK293T cells in triplicate using Transit-293 transfection reagent (Mirus, Madison, Wis.) using the manufacturers recommended protocol. To normalize for the amount of transfected DNA, and to control for the difference in size of the plasmids, 1.89e11 DNA molecules were transfected into each of the wells. Forty-eight hours after transfection the amount of hrGFP protein expression was assessed using fluorescence microscopy (images shown in FIG. 5). From the images it appears that the longer intron leads to increased levels of protein expression. However, even the shorter intron is able to confer ample levels of hrGFP protein expression.

Quantitative real-time PCR was used to determine the level of transcription from each of these constructs. Briefly, total RNA was isolated from the transfected cells using the mirVana miRNA isolation kit (Applied Biosystems, Foster City, Calif.) following the manufacturers recommended protocol. The transfected cells were homogenized in lysis/ binding buffer using an Omni-Tip homogenization probe (Omni International, Kennesaw, Ga.). The total RNA was treated with DNase using the Turbo-DNA-free kit (Applied Biosystems, Foster City, Calif.). Random-primed cDNA was prepared from 500 ng of total RNA using the High Capacity cDNA synthesis kit from Applied Biosystems (Foster City, Calif.). The level of GAPDH and hrGFP expression was quantified using real-time PCR. hrGFP expression was normalized to GAPDH expression in each of the wells. The level of expression from each construct was determined by averaging the three independent wells. The results of this expression study are shown in FIG. 6.

It was found that both promoters drive expression of hrGFP to similar levels. Using the longer intron increases the level of hrGFP expression by about two fold. The use of the short intron still allows significant levels of hrGFP expression, albeit about one-fifth that of the CMV-hrGFP construct. Overall, the level of expression from these constructs is about 3-5 times lower than that observed from using the CMV-hrGFP construct.

It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.

It should also be noted that, as used in this specification and the appended claims, the phrase "configured" describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration to. The phrase "configured" can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.

All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference.

Aspects have been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope herein.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 18
<210> SEQ ID NO 1
<211> LENGTH: 195
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1) .. (195)
<400> SEQUENCE: 1
                                                                        60
gaatteggge ggagttaggg eggageeaat eagegtgege egtteegaaa gttgeetttt
                                                                       120
atggctgggc ggagaatggg cggtgaacgc cgatgattat ataaggacgc gccgggtgtg
gcacagctag ttccgtcgca gccgggattt gggtcgcggt tcttgtttgt ggatccctgt
                                                                       180
gatcgtcact tgaca
                                                                       195
<210> SEQ ID NO 2
<211> LENGTH: 192
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(192)
<400> SEQUENCE: 2
gaatteggge ggagttaggg eggageeaat eagegtgege egtteegaaa gttgeetttt
                                                                        60
atggctgggc ggagaatggg cggtgaacgc cgatgattat ataaggacgc gccgggtgtg
                                                                       120
gcacagctag ttccgtcgca gccgggattt gggtcgcggt tcttgtttgt ggatccctgt
                                                                       180
gatcgtcact tg
                                                                       192
<210> SEQ ID NO 3
<211> LENGTH: 10
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: CArG element
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (10)
<223> OTHER INFORMATION: CArG element
<400> SEQUENCE: 3
                                                                        10
ccttttatgg
<210> SEQ ID NO 4
<211> LENGTH: 140
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Intron
<220> FEATURE:
<221> NAME/KEY: Intron
<222> LOCATION: (1)..(140)
<400> SEQUENCE: 4
gtaagtcact gactgtctat gcctgggaaa gggtgggcag gagatggggc agtgcaggaa
                                                                        60
aagtggcact atgaaccctg cagccctagg aatgcatcta gacaattgta ctaaccttct
                                                                       120
tctctttcct ctcctgacag
                                                                       140
```

20 19

<210> SEQ ID NO 5 <211> LENGTH: 5959 <212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Optimized Hexosaminidase HEXA

<220> FEATURE:

<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(5959)
<223> OTHER INFORMATION: Synthetic optimized hexosaminidase HEXA

<400> SEQUENCE: 5

ctgcgcgctc	gctcgctcac	tgaggccgcc	cgggcaaagc	ccgggcgtcg	ggcgaccttt	60
ggtcgcccgg	cctcagtgag	cgagcgagcg	cgcagagagg	gagtggggtt	cggtaccggg	120
cggagttagg	gcggagccaa	tcagcgtgcg	ccgttccgaa	agttgccttt	tatggctggg	180
cggagaatgg	gcggtgaacg	ccgatgatta	tataaggacg	cgccgggtgt	ggcacagcta	240
gttccgtcgc	agccgggatt	tgggtcgcgg	ttcttgtttg	tggatccctg	tgatcgtcac	300
ttggtaagtc	actgactgtc	tatgcctggg	aaagggtggg	caggagatgg	ggcagtgcag	360
gaaaagtggc	actatgaacc	ctgcagccct	aggaatgcat	ctagacaatt	gtactaacct	420
tcttctcttt	cctctcctga	cagtccggaa	agccaccatg	acgtcctcca	gactgtggtt	480
ctcgctcttg	ttggcggcag	cgtttgccgg	aagggcaacc	gegetetgge	cttggcccca	540
gaactttcag	acgtcagacc	agegetatgt	gttgtaccct	aacaactttc	agtttcagta	600
tgacgtgtcg	tcagccgcgc	agccggggtg	tteggteett	gatgaagcgt	tccaacgata	660
tcgagatctt	ctgtttgggt	cggggtcctg	gcctagaccc	tacctcaccg	ggaagcgcca	720
cacgcttgaa	aagaatgtac	ttgtcgtgag	cgtggtaaca	cccggatgca	atcagcttcc	780
cactcttgaa	agcgtggaaa	actacacgtt	gacgatcaac	gatgatcagt	gcttgctcct	840
gtcagagaca	gtgtggggtg	cgctgagggg	actcgaaact	ttctcacagc	ttgtctggaa	900
gtccgcagag	ggcacgttct	tcatcaacaa	aacggaaatc	gaggatttcc	cccgatttcc	960
tcatcgcggg	cttcttctgg	ataccagccg	gcactacctc	ccactgtcat	cgattctgga	1020
cacacttgac	gtaatggctt	acaacaaact	caatgtgttt	cactggcatt	tggtggatga	1080
cccgtccttt	ccttacgaat	ccttcacttt	ccccgagctg	atgagaaaag	gaagctataa	1140
teeggtgaee	cacatctaca	cagcgcaaga	cgtcaaggag	gtaatcgagt	atgcgaggtt	1200
geggggeatt	egegtgetgg	cagagtttga	cacccccggt	catacgctgt	cgtgggggcc	1260
agggattccc	ggtttgttga	cgccttgtta	ttcggggtca	gagccgagcg	gaacgttcgg	1320
acctgtcaat	cegtecetga	ataacactta	cgagtttatg	agcactttct	tcttggaggt	1380
gtcgtccgta	ttcccagact	tctaccttca	tetgggeggt	gatgaagtgg	actttacttg	1440
ctggaaaagc	aacccggaga	tccaagattt	catgcgcaaa	aagggattcg	gagaggactt	1500
taaacaactt	gagtcattct	atattcaaac	actccttgat	atcgtatcgt	cgtacggaaa	1560
agggtatgtc	gtctggcagg	aagtgttcga	caacaaagtc	aagattcagc	ccgatacgat	1620
cattcaagtg	tggagggagg	acatccccgt	gaactatatg	aaggagctcg	aactcgtcac	1680
aaaggctgga	ttcagagcgt	tgctttcagc	gccttggtac	ttgaatcgca	tttcgtatgg	1740
tecegattgg	aaggactttt	acatcgtgga	geceetegea	ttcgaaggga	ccccggagca	1800
gaaggcgttg	gtgattgggg	gtgaggcgtg	catgtgggga	gagtacgtcg	acaatactaa	1860
tcttgtcccg	cgcttgtggc	cgagggctgg	agccgtcgcc	gaaaggctct	ggagcaataa	1920
	gacctgacgt					1980
5 -555	555	J	5 55	55	5 5	

ccggcgagga	gtacaggcac	aaccccttaa	cgtaggtttt	tgtgagcagg	aatttgaaca	2040
gacatctaga	gggcccttcg	aacaaaaact	catctcagaa	gaggatctgg	tcgactgata	2100
actcgagtgt	ttattgcagc	ttataatggt	tacaaataaa	gcaatagcat	cacaaatttc	2160
acaaataaag	cattttttc	actgcattct	agttgtggtt	tgtccaaact	catcaatgta	2220
tcttatcatg	acgcgtagga	acccctagtg	atggagttgg	ccactccctc	tetgegeget	2280
cgctcgctca	ctgaggccgg	gcgaccaaag	gtcgcccgac	gcccgggctt	tgcccgggcg	2340
gcctcagtga	gcgagcgagc	gegeagetgg	cgtaatagcg	aagaggcccg	caccgatcgc	2400
ccttcccaac	agttgcgcag	cctgaatggc	gaatggcgat	tccgttgcaa	tggctggcgg	2460
taatattgtt	ctggatatta	ccagcaaggc	cgatagtttg	agttcttcta	ctcaggcaag	2520
tgatgttatt	actaatcaaa	gaagtattgc	gacaacggtt	aatttgcgtg	atggacagac	2580
tcttttactc	ggtggcctca	ctgattataa	aaacacttct	caggattctg	gcgtaccgtt	2640
cctgtctaaa	atccctttaa	teggeeteet	gtttagctcc	cgctctgatt	ctaacgagga	2700
aagcacgtta	tacgtgctcg	tcaaagcaac	catagtacgc	gccctgtagc	ggcgcattaa	2760
gcgcggcggg	tgtggtggtt	acgcgcagcg	tgaccgctac	acttgccagc	gccctagcgc	2820
ccgctccttt	cgctttcttc	ccttcctttc	tegecaegtt	cgccggcttt	ccccgtcaag	2880
ctctaaatcg	ggggctccct	ttagggttcc	gatttagtgc	tttacggcac	ctcgacccca	2940
aaaaacttga	ttagggtgat	ggttcacgta	gtgggccatc	gccctgatag	acggtttttc	3000
gccctttgac	gttggagtcc	acgttcttta	atagtggact	cttgttccaa	actggaacaa	3060
cactcaaccc	tatctcggtc	tattcttttg	atttataagg	gattttgccg	atttcggcct	3120
attggttaaa	aaatgagctg	atttaacaaa	aatttaacgc	gaattttaac	aaaatattaa	3180
cgtttacaat	ttaaatattt	gcttatacaa	tcttcctgtt	tttggggctt	ttctgattat	3240
caaccggggt	acatatgatt	gacatgctag	ttttacgatt	accgttcatc	gattctcttg	3300
tttgctccag	actctcaggc	aatgacctga	tagcctttgt	agagacctct	caaaaatagc	3360
taccctctcc	ggcatgaatt	tatcagctag	aacggttgaa	tatcatattg	atggtgattt	3420
gactgtctcc	ggcctttctc	acccgtttga	atctttacct	acacattact	caggcattgc	3480
atttaaaata	tatgagggtt	ctaaaaattt	ttatccttgc	gttgaaataa	aggettetee	3540
cgcaaaagta	ttacagggtc	ataatgtttt	tggtacaacc	gatttagctt	tatgctctga	3600
ggctttattg	cttaattttg	ctaattcttt	gccttgcctg	tatgatttat	tggatgttgg	3660
aattcctgat	gcggtatttt	ctccttacgc	atctgtgcgg	tatttcacac	cgcatatggt	3720
gcactctcag	tacaatctgc	tctgatgccg	catagttaag	ccagccccga	cacccgccaa	3780
cacccgctga	cgcgccctga	cgggcttgtc	tgctcccggc	atccgcttac	agacaagctg	3840
tgaccgtctc	cgggagctgc	atgtgtcaga	ggttttcacc	gtcatcaccg	aaacgcgcga	3900
gacgaaaggg	cctcgtgata	cgcctatttt	tataggttaa	tgtcatgata	ataatggttt	3960
cttagacgtc	aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	4020
tctaaataca	ttcaaatatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	4080
aatattgaaa	aaggaagagt	atgagtattc	aacatttccg	tgtcgccctt	attccctttt	4140
ttgcggcatt	ttgccttcct	gtttttgctc	acccagaaac	gctggtgaaa	gtaaaagatg	4200
ctgaagatca	gttgggtgca	cgagtgggtt	acatcgaact	ggatctcaac	agcggtaaga	4260
	ttttcgccc					4320
	-		-	=		

-continued

-concinued	
tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac	4380
actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg	4440
gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca	4500
acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg	4560
gggatcatgt aactegeett gategttggg aaceggaget gaatgaagee ataceaaaeg	4620
acgagegtga caccaegatg cetgtageaa tggcaacaac gttgegeaaa etattaactg	4680
gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag	4740
ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg	4800
gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct	4860
cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac	4920
agatogotga gataggtgoo toactgatta agoattggta actgtoagao caagtttact	4980
catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga	5040
tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt	5100
cagaccccgt agaaaagatc aaaggatctt cttgagatcc ttttttctg cgcgtaatct	5160
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc	5220
taccaactet tttteegaag gtaactgget teageagage geagatacea aataetgtee	5280
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc	5340
togetetget aatootgtta coagtggotg etgecagtgg egataagteg tgtottaceg	5400
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt	5460
cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg	5520
agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg	5580
gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt	5640
atagteetgt egggtttege eacetetgae ttgagegteg atttttgtga tgetegteag	5700
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt	5760
gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta	5820
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt	5880
cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc	5940
cgattcatta atgcagcag	5959
<pre><210> SEQ ID NO 6 <211> LENGTH: 5905 <212> TYPE: DNA <211> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Hexosaminidase variant known as HEXM <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)(5905) <223> OTHER INFORMATION: Variant of hexosaminidase known as HEXM</pre>	
<400> SEQUENCE: 6	
ctgcgcgctc gctcgctcac tgaggccgcc cgggcaaagc ccgggcgtcg ggcgaccttt	60
ggtcgcccgg cctcagtgag cgagcgagcg cgcagagagg gagtggggtt cggtaccggg	120
cggagttagg gcggagccaa tcagcgtgcg ccgttccgaa agttgccttt tatggctggg	180
cggagaatgg gcggtgaacg ccgatgatta tataaggacg cgccgggtgt ggcacagcta	240
-55-555-5-5-5-555	

300

gttccgtcgc agccgggatt tgggtcgcgg ttcttgtttg tggatccctg tgatcgtcac

ttggtaagtc	actgactgtc	tatgcctggg	aaagggtggg	caggagatgg	ggcagtgcag	360
gaaaagtggc	actatgaacc	ctgcagccct	aggaatgcat	ctagacaatt	gtactaacct	420
tcttctcttt	cctctcctga	cagtccggaa	agccaccatg	acctcttcta	gactgtggtt	480
cageetgetg	ctcgccgcag	cctttgccgg	acgggccacc	gctctttggc	cgtggcccca	540
gaacttccag	acctctgacc	agcggtacgt	gctttaccca	aataacttcc	agtttcagta	600
cgatgtgtcc	agegeegete	agccgggctg	ttccgtgctg	gacgaggcct	tccaacgcta	660
tcgcgacctt	cttttcggat	ctggctcctg	gccaaggcca	tatctcaccg	gaaagagaca	720
cacccttgag	aagaacgtcc	tcgtggtgag	cgtggtgacc	cctggttgta	atcaactgcc	780
gaccctggaa	tctgtcgaga	attacactct	gactattaac	gacgaccaat	gcctgcttct	840
gtctgaaact	gtctggggag	cactgcgggg	acttgaaacc	ttcagccagc	tggtgtggaa	900
gtcagcagag	ggaaccttct	tcatcaataa	gaccgaaatc	gaggattttc	cccgcttccc	960
tcatcgggga	ctgctgctgg	acactagccg	ccattatctt	ccgcttaagt	ccattctgga	1020
taccctcgac	gtgatggcat	acaacaaact	caatgtgttc	cactggcatc	tggtggacga	1080
ccagtcattt	ccctacgagt	ccttcacctt	ccccgaactc	atgaggaagg	gaagctactc	1140
tctcagccac	atctacaccg	cccaagacgt	caaggaagtc	atcgaatatg	cacgcctgcg	1200
cggaattaga	gtgctcgccg	agttcgacac	ccctgggcac	accctgagct	ggggacctgg	1260
catccctggt	ctgctcactc	cctgctattc	agggtcagaa	ccttccggta	cttttggccc	1320
tgtcaatcct	agcctgaaca	atacttacga	gtttatgtct	actttcttcc	ttgaagtctc	1380
atcagtcttt	ccagacttct	atctgcatct	cggaggtgat	gaagtggact	tcacctgttg	1440
gaagtcaaac	cccgaaattc	aagactttat	gcggaagaag	ggtttcggag	aggatttcaa	1500
acaactggag	agcttctaca	tccagaccct	tctcgacatc	gtgtcctcat	acgggaaagg	1560
ttacgtggtc	tggcaggaag	tgttcgacaa	taaggtgaag	attcagcccg	acaccattat	1620
ccaagtctgg	cgggaggaca	tcccagtgaa	ctacatgaag	gaacttgagc	tggtgactaa	1680
ggctgggttc	cgcgctcttc	tcagcgctcc	atggtatctc	aatcggatct	cttacggaca	1740
ggattggagg	aagttctaca	aagtcgaacc	cctggctttc	gaggggaccc	ctgagcagaa	1800
ggctcttgtg	atcggaggcg	aggcctgcat	gtggggagag	tacgtggatg	ccaccaacct	1860
ggtgcccaga	ctttggccaa	gggccggtgc	cgtggctgaa	cgcctgtggt	caaataagct	1920
gacccgcgat	atggacgacg	cctatgatag	actttcacat	ttccggtgcg	aactggtgcg	1980
gagaggggtg	gctgcccagc	cgctgtacgc	cgggtactgc	aaccaggagt	ttgagcagac	2040
ttaatagctc	gagtgtttat	tgcagcttat	aatggttaca	aataaagcaa	tagcatcaca	2100
aatttcacaa	ataaagcatt	tttttcactg	cattctagtt	gtggtttgtc	caaactcatc	2160
aatgtatctt	atcatgacgc	gtaggaaccc	ctagtgatgg	agttggccac	tccctctctg	2220
cgcgctcgct	cgctcactga	ggccgggcga	ccaaaggtcg	cccgacgccc	gggctttgcc	2280
cgggcggcct	cagtgagcga	gegagegege	agctggcgta	atagcgaaga	ggcccgcacc	2340
gatcgccctt	cccaacagtt	gcgcagcctg	aatggcgaat	ggcgattccg	ttgcaatggc	2400
tggcggtaat	attgttctgg	atattaccag	caaggccgat	agtttgagtt	cttctactca	2460
ggcaagtgat	gttattacta	atcaaagaag	tattgcgaca	acggttaatt	tgcgtgatgg	2520
	ttactcggtg					2580
	tctaaaatcc					2640
				5-2-2900	- 5 5 5 5 6 6	• •

cgaggaaagc	acgttatacg	tgctcgtcaa	agcaaccata	gtacgcgccc	tgtagcggcg	2700
cattaagcgc	ggcgggtgtg	gtggttacgc	gcagcgtgac	cgctacactt	gccagcgccc	2760
tagcgcccgc	teettteget	ttcttccctt	cctttctcgc	cacgttcgcc	ggctttcccc	2820
gtcaagctct	aaatcggggg	ctccctttag	ggttccgatt	tagtgcttta	cggcacctcg	2880
accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	gccatcgccc	tgatagacgg	2940
tttttegeee	tttgacgttg	gagtccacgt	tctttaatag	tggactcttg	ttccaaactg	3000
gaacaacact	caaccctatc	tcggtctatt	cttttgattt	ataagggatt	ttgccgattt	3060
cggcctattg	gttaaaaaat	gagctgattt	aacaaaaatt	taacgcgaat	tttaacaaaa	3120
tattaacgtt	tacaatttaa	atatttgctt	atacaatctt	cctgtttttg	gggcttttct	3180
gattatcaac	cggggtacat	atgattgaca	tgctagtttt	acgattaccg	ttcatcgatt	3240
ctcttgtttg	ctccagactc	tcaggcaatg	acctgatagc	ctttgtagag	acctctcaaa	3300
aatagctacc	ctctccggca	tgaatttatc	agctagaacg	gttgaatatc	atattgatgg	3360
tgatttgact	gtctccggcc	tttctcaccc	gtttgaatct	ttacctacac	attactcagg	3420
cattgcattt	aaaatatatg	agggttctaa	aaattttat	ccttgcgttg	aaataaaggc	3480
ttctcccgca	aaagtattac	agggtcataa	tgtttttggt	acaaccgatt	tagctttatg	3540
ctctgaggct	ttattgctta	attttgctaa	ttetttgeet	tgcctgtatg	atttattgga	3600
tgttggaatt	cctgatgcgg	tattttctcc	ttacgcatct	gtgcggtatt	tcacaccgca	3660
tatggtgcac	tctcagtaca	atctgctctg	atgccgcata	gttaagccag	ccccgacacc	3720
cgccaacacc	cgctgacgcg	ccctgacggg	cttgtctgct	cccggcatcc	gcttacagac	3780
aagctgtgac	cgtctccggg	agctgcatgt	gtcagaggtt	ttcaccgtca	tcaccgaaac	3840
gcgcgagacg	aaagggcctc	gtgatacgcc	tatttttata	ggttaatgtc	atgataataa	3900
tggtttctta	gacgtcaggt	ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	3960
tatttttcta	aatacattca	aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	4020
ttcaataata	ttgaaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	4080
ccttttttgc	ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	4140
aagatgctga	agatcagttg	ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	4200
gtaagatcct	tgagagtttt	cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	4260
ttctgctatg	tggcgcggta	ttatcccgta	ttgacgccgg	gcaagagcaa	ctcggtcgcc	4320
gcatacacta	ttctcagaat	gacttggttg	agtactcacc	agtcacagaa	aagcatctta	4380
cggatggcat	gacagtaaga	gaattatgca	gtgctgccat	aaccatgagt	gataacactg	4440
cggccaactt	acttctgaca	acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	4500
acatggggga	tcatgtaact	cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	4560
caaacgacga	gcgtgacacc	acgatgcctg	tagcaatggc	aacaacgttg	cgcaaactat	4620
taactggcga	actacttact	ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	4680
ataaagttgc	aggaccactt	ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	4740
aatctggagc	cggtgagcgt	gggtetegeg	gtatcattgc	agcactgggg	ccagatggta	4800
agccctcccg	tatcgtagtt	atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	4860
	cgctgagata					4920
	tatactttag					4980
	ttttgataat					5040
cgaagaccet	cccgacaac	cccacgacca	addiction	acycyaycct	Logicicact	2040

```
gagogtcaga cocogtagaa aagatcaaag gatottottg agatootttt tttotgogog
                                                                     5100
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc
                                                                    5160
aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata
                                                                    5220
ctgtccttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta
                                                                    5280
catacetege tetgetaate etgttaceag tggetgetge eagtggegat aagtegtgte
                                                                    5340
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg
                                                                    5400
ggggttcgtg cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac
agcgtgagct atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg
                                                                    5520
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt
                                                                    5580
atctttatag tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct
                                                                    5640
                                                                    5700
cqtcaqqqqq qcqqaqccta tqqaaaaacq ccaqcaacqc qqccttttta cqqttcctqq
ccttttgctg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata
                                                                    5760
acceptattac cecctttegae tegaetegata ceectceecee caecegaacee accepaecea
                                                                    5820
gcgagtcagt gagcgaggaa gcggaagagc gcccaatacg caaaccgcct ctccccgcgc
                                                                    5880
qttqqccqat tcattaatqc aqcaq
                                                                     5905
<210> SEO ID NO 7
<211> LENGTH: 4135
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: scAAV genome with JeT promoter, intron sequence
     and GFP reporter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (695)..(886)
<223> OTHER INFORMATION: JeT promoter
<220> FEATURE:
<221> NAME/KEY: Intron
<222> LOCATION: (887)..(1026)
<223> OTHER INFORMATION: synthetic intron
<220> FEATURE:
<221> NAME/KEY: gene
<222> LOCATION: (1058)..(1774)
<223> OTHER INFORMATION: green fluorescent protein reporter gene
<220> FEATURE:
<221> NAME/KEY: polyA_signal
<222> LOCATION: (1791)..(1918)
<223> OTHER INFORMATION: SV40 polyadenylation sequence
<400> SEQUENCE: 7
ctaaattgta agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc
attttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga
gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc
                                                                      180
caacqtcaaa qqqcqaaaaa ccqtctatca qqqcqatqqc ccactacqtq aaccatcacc
                                                                      240
ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag
                                                                      300
cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa
                                                                      360
agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac
                                                                      420
cacaccegee gegettaatg egeogetaca gggegegtee cattegeeat teaggetgeg
                                                                      480
caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg
                                                                      540
gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg
                                                                      600
                                                                      660
taaaacqacq qccaqtqaqc qcqcqtaata cqactcacta taqqqcqaat tqqaqctcca
```

acgocgatga ttatataagg acgocgogg tytggacacg ctagttcogt cgcagcoggg 84/ atttgggtog cggttcttgt tytggatacc ctgtgatacg cacttggtaa gtcactagat 900 gtctatgcct gggaaagggt gggcaggaga tygggacagt caggaaagt ggcactatga 960 accotgcagc cctaggaatg catctagaca attgtactaa ccttcttct tttcctctcc 1020 tgacagacga agcttgtcta tatcgattga attcaccatg gtgagcaagc agatcctgaa 1040 gaacaccggc ctgcaggaga tcatgagatt caaggtgaac ctggaggggg tggtgaacaca 1140 ccacgtgttc accatggagg gctgcggcaa gggcaccatc ctgttcggca accagctggt 1200 gcagatcog gtgacaagg gccccccc gcccttcgcc ttcgacatcc tgagccccg 1260 cttccagtac ggcaaccaga ccttcaccaa gtaccccgag gacatcagg acgtctcttctcat 1320 ccagagcttc cccqccggct tcgtgtacga cggacacctc cgctacagag acggcggcct 1380 gggtggagatc cgcaaccaga tcaacctgat cgaggagatg ttcgtgtacc gcgtggagata caagggccg aacttcccca acgacgcgcc cgtsatgaag aagaccatca ccggcctgca 1560 gcccagcttc gaggtggtg acatgacaca cggcgtgctg gtgggcaag tgatcctgg 1560 gcccagcttc gaggtggtg acatgacaca cggcgtgctg gtgggccagg tgatcctgg 1560 gcccagcttc gaggtggtg acatgacaca ctcacccga gcaccctg acaccctga tgaagagaa 1620 ggggagagac gcgccccc ccgagacaca ctcacccga gggggctgg gtgggagac 2 gagaccatca 2 ggggggggggggggggggggggggggggggggggg	ccgcggtggc	ggccgctcta	gcacgcgtgg	atctgaattc	gggcggagtt	agggcggagc	720
atttgggteg eggttettgt ttgtggatee etgtgategt caettggtaa gteaetgact 900 gtetatgeet gggaaaggg gggagagg eaggeagge caggaaaagt ggcactatga 960 accetgeage eetaggaatg caetagaca attgacetaa eettetete ttteetetee 1020 tgacagacga agettgeta tategattga atteaccatg gtgagcaage agacetgaacaa 1180 gaacaccgg etgcaggag teatgagett eaaggtgaac etggagggg tggtgaacaa 1140 ccaegtgtte accatggagg getgeggaa gggacacate etgteggaa accagetggt 1200 geagateeg gtgaccaagg gecgeeceet gecettegee tteggacatee tgageceege 1260 ettecagtae ggcaacagg gegeeceect gecettegee tteggacacagg actetetaat 1320 eccagagette eccegegget teggtgaacaa ggacacatae etggaggaga acggegget 1380 gggggagate eccagaggae ectteacaa gtacceegag gacatcagag acggegget 1380 ggggggagate ecgacaggae teggtgaaga gegacaceta eggagagat teggtgaaca ecgacggget 1380 ggggggagate ecgacgagaa teaacctgat eggaggagat teggtgaca geggtggagt 1440 eaagggeege aactteecca acgacggee eggagtgatg gtgggacagg tgateetgg 1560 geccagette gaggtggt acatgaaga aggeegge tgateetgg 1560 ggeccagette gagggggg aggtetacagag eggegtgtg gtgggeeggg tgateetgg 1560 ggaggaggag agggggggg aggtetacagag eggaggetgg agggeggggg aggaggaga eggaggetgg agggggggggg	caatcagcgt	gcgccgttcc	gaaagttgcc	ttttatggct	gggcggagaa	tgggcggtga	780
getatget gggaaagggt gggcaggag tggggcagg caggagaag ggcactatga 960 accetgcage cetaggaatg catetagaca attgactaa cettettete ttteetetee 1020 tgacagacg agettgeta tategattga attcaccatg gtgagcaagc agactetgaa 1080 gaacacegge ctgcaggaga tcatgagett caaggtgaac ctggaggggg tggtgaacaa 1140 ccacgtgtte accatggagg gctgcggcaa gggcaacate ctgttcggca accactggt 1200 gcagatcoge gtgaccaagg gccccccct gcccttcgcc ttcgacatcc tgagccccgc 1260 cttccagtac ggcacacagg gcgcccccct gcccttcgcc ttcgacatcc tgagccccgc 1260 cttccagtac ggcacacagg ccttcaccaa gtaccccgag gacatcagcg acttettaat 1320 ccagaggtte ccccgcggct tcgtgtacga gcgacacctg cgctacagag acgggggct 1380 ggggggagate cgcaggagaa tcaacactgat cgaggagatg ttcgtgtacc gcgtgaggat 1440 caagggccg aacttcccca acgacggcc cgtgatgaag aagaccatca ccggcctgca 1500 gcccagctte gaggtggtg acatgacga cgcgggctcg gtgggcagg tgatcctggt 1560 ggccagctte gaggtggtg acatgacga cgcggtgctg gtgggccagg tgatcctggt 1560 ggccagctt gaggagatg agtctacag ctcaccata ccggcctgaa acaggcggg agggcgggggggggg	acgccgatga	ttatataagg	acgcgccggg	tgtggcacag	ctagttccgt	cgcagccggg	840
accetgoage cetaggaatg catetagaca attgtactaa cettettete theceteec 1020 tgacagacga agettgteta tategattga atteaccatg gtgagcaage agatectgaa 1080 gaacacegge etgeagagag teatgagett caaggtgaac etggagggg tggtgaacaa 1140 ceacgtgtte accatggagg getgeggaa gggaacaate etgtteggaa accagetggt 1200 geagateege gtgaccaagg getgeececet gecettegee thegacatee tgageceege 1260 ettecagtae ggcaacegea ectteaceaa gtacecegag gacateageg actietteat 1320 ecagaggte eegeggaa teatgaggag geggagaagatg tegtgaacaa 2020 ettecagtae ggcaacega ectteaceaa gtacecegag gacateageg actietteat 1320 ecagaggate eegeaggaa teaacetgat egaggagatg tegtgaaca eeggaggeet 1380 ggtggagate eegaggagaa teaacetgat egaggagatg tegtgtace gegtgaggat 1440 eaagggeegg aactteecea acgacggee eggaggagatg tegtgtace gegtgaggat 1440 eaagggeegg aactteecea acgacggee eggaggagatg gtgggeeagg tgateetggt 1560 ggeecagette gaggtggtg acatgaacga eggeggtgetg gtgggeeagg tgateetggt 1560 ggeecagette gaggaggat acatgaacga eggeggtgtg gtgggeeagg tgateetggt 1560 ggeecagett gaaggagte eegaggageagee etgeacaagee etgeacaagee etggggagaa eggaggggggggggggggggggg	atttgggtcg	cggttcttgt	ttgtggatcc	ctgtgatcgt	cacttggtaa	gtcactgact	900
tgacagacga agcttgtcta tategattga atteaceatg gtgagcaage agatectgaa 1080 gaacaccgge etgeaggaga teatgagett caaggtgaac etgagggeg tggtgaacaa 1140 ccacgtgtte accaggagg getgeggaa gggacacate etgtteggea accagetggt 1200 geagateegg gtgacaaagg getgeggeaa gggacacate etgageatee tgagceegg 1260 ettecagtae ggcaacegge ettecaceaa gtaceeegag gacateageg actteteat 1320 ecagagette ecegegget tegtgtaega gegaceettg egetacgagg aeggeggeet 1380 gggtgaggate egeaggaga teaceetgag gegaceettg egetacgagg aeggeggeet 1380 gggtggagate egeaggaga teaceetgae egetacgagg aeggeggeet 1380 ggetgaggate egeaggaga teaceetgae egetacgag agaacatea eeggetggag accaggette gaggtgagate egeaggaga atteaceag egeggegetg gtgggeeagg tgateetgg gtggeeaggette gaggtggtg acatgaacga eggeggtetg gtgggeeagg tgateetgg gtggeeaggtg acaggeggetg acatgaacga eggeggetgetg gtgggeeagg tgateetgg ggggegggggggggg	gtctatgcct	gggaaagggt	gggcaggaga	tggggcagtg	caggaaaagt	ggcactatga	960
gaacacogge ctgcaggaga tcatgagett caaggtgaac ctggaggggg tggtgaacaa 1140 ccacgtgtte accatggagg gctgcggcaa gggcaacatc ctgttcggca accagctggt 1200 gcagatcogg gtgaccaagg gcgccccct gccttcqcc ttcgacatcc tgagccccgc 1260 cttccagtac ggcaacagg gcgcccccct gccttcqcc ttcgacatcc tgagccccgc 1260 cttccagtac ggcaaccgca ccttcaccaa gtaccccgag gacatcagcg acttcttcat 1320 ccagagette cccgccggct tcgtgtacga gcgaccctg cgctacgagg acggcggct 1380 ggtggagatc cgcagcgaca tcaacctgat cgaggagatg ttcgtgtacc gcgtggagta 1440 caagggccgc aacttcccca acgacggccc cgtgatgaag aagaccatca ccggcctgca 1500 gcccagcttc gaggtggtg acatgaacga cgcgctgctg gtgggccaagg tgatcctggt gtgaccgcttg gaggcggtggt acatgaacga cgcgcacatg ggcaccctga tgaagagca 1620 ggcgtggtgg aagagcttcc ccgagtacca cttcatccag caccgcctga agaagaccta 1680 cgtggaggac ggcggcttcg tggagcagca cgagaccgc atcgcccagc tgaccagct 1740 gggcaagccc ctgggcagcc tgcacgagtg ggtgaatag ctcgacagact ttgtttatt 1800 gggcagtata atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt 1860 tttttactgc attctagttg tggtttgtcc aaactcacaa atttcacaaa taaagcattt 1800 ccggaccgtg tacccagctt ttgttccctt tagtgagggt taattgcgc cttggcgtaa 1920 ccggaccgtga gcataaagt taaagcctgg ggtgcaaac ttgtatcta tcatggctag 1920 ccggaccgtga gcataaagt taaagcctgg ggtgcaaac atggatgaca accaacata 2040 cgagccggaa gcataaagt taaagcctgg ggtgcaaac ttgtcgtgca gctgcattaa 2100 catggtcat agctgttcc tgtgtgaaat tgttatccgc tcacaaatcc acaacaacata 2040 cgagccggaa gcataaagt taaagcctgg ggtgcaaac tgtgcgtaca gctgcattaa 2160 cgagccggaa gcatacaaga cgstaaaaag gccggagag cggtatcagc tcactcaaag 2280 gggaataac ggttatccac agaatcagg gataacgga ggatacaac tgtggacaaaa 2240 cgccccctg acgagcac agaacaaga ccgtaaaaaa gccgagaga cggtataaag gaggagacaaaa 2280 gggaataaa aggccaggaa ccgtaaaaaag gccggtgc tggggtttt ccataggacc cgccccctg acgagcac acaaaaacag gccgcgttg tggggtttt ccataggaca accctgcgc ttaccggata cctgacaaaaag gccgcgttg tggggataaca ggggagctttcc caaagccag ttaccagga cctaaatca caaaaacag gccgcgttg tgggagaca acccggacaaaa 2240 cgcaccactgc ttaccggata cctagctcg ttggaggca ccactggaaca ccccggtca 2260 caaacaccgg taagacaca	accctgcagc	cctaggaatg	catctagaca	attgtactaa	ccttcttctc	tttcctctcc	1020
ccacqqqttc accatqqaqq gcqccacct gcccttcqcc ttcqacatcc tqqqcccqcq 1260 gcaqatccqc gtqaccaaqq gcqccccct gcccttcqcc ttcqacatcc tqaqccccqc 1260 cttccaqtac ggcaaccqca ccttcaccaa gtaccccqqq gcaatcaqcq acttcttcat 1320 ccaqaqqttc cccqcqqqct tcqtqtacqa gcqcacctq cqctacqqqq acqqqqqqqqqqqqqqqqqq	tgacagacga	agcttgtcta	tatcgattga	attcaccatg	gtgagcaagc	agatcctgaa	1080
geagateege gtgaccaagg gegececet gecettegee ttegacatee tgageceege 1266 ettecagtae ggeaacegea cetteaceaa gtacceegag gacateageg acttetteat 1326 ecagagette ecegeegget tegtgacaga gegaceettg egetacgagg acggegeet 1386 ggtgagaate egeagegaca teaacetgat egaggagatg ttegtgtace gegtgagata 1446 eaaggeegga acceeggegata 1446 eaaggeegga acceeggeeggagata 1446 eaaggeegga acceeggeeggagata ecagaggeege eggaggagatg ttegtgtace geggeggagata 1466 ggeccagette gaggtggtgt acatgaacga eggegtgetg gtgggecagg tgateetggt 1566 gtaccgeetg aacageggaa agttetacag etgecacatg egcaceetga tgaagagacaa 1626 ggaggegggggggggggggggggggggggggggggggg	gaacaccggc	ctgcaggaga	tcatgagctt	caaggtgaac	ctggagggcg	tggtgaacaa	1140
cttccagtac ggcaaccgca ccttcaccaa gtaccccgag gacatcagcg acttcttcat 1320 ccagagcttc cccgccggct tegtgtacga gcgcaccttg cgctacgagg acggcggcct 1380 ggtggagatc cgcagcgcc tcgtgtacgag gcgcaccttg cgctacgagg acggcggcct 1440 caagggccgc aacttcccca acgacggccc cgtgatgaag aagaccatca ccggcctgca 1500 gcccagcttc gaggtggtgt acatgacgac cggcgtgtgt gtggggcagg tgatcctggt gtaccggcttg gaggggtggt acatgacgac cggagtacag cgcaccttga tgaagagcaa 1620 gggggtggtg aagagacttc ccgagtacca cttcatccag caccgcctga tgaagagcaa 1620 ggggggtggtg aagagacttc ccgagtacca cttcatccag caccgcctga agaagacct 1740 ggggcaagac ctgggagacc tgaacagacg tgaacagcc tgaacagacg cgagacagcc atcgccagac tgaacagcct 1740 ggggcaagacc ctgggagacc tgaacagatg ggtgtaatag ctcgagaaga cttgtttatt 1800 ggggcaagacc ctgggcagcc tgcacgagtg ggtgtaatag ctcgagaaga cttgtttatt 1800 gcagcttata atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt 1860 ttttcactgc attctagttg tggtttgtcc aaactcacaa atttcacaaa taaagcattt 1800 ccggaccgtg tacccagctt ttgttccctt tagtgagggt taattgcgcg cttggcgtaa 1920 ccggaccgtg tacccagctt ttgttccctt tagtgagggt taattgcgcg cttggcgtaa 1920 ccggaccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2040 cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2040 cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2100 attggttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2160 ctcactgacc ggtcgtcgg ggagaggggt ttgcgtattg ggcgctcttc cgcttcctcg 2220 ctcactgact cgctgcgct ggtcgttcgg ctggggagaaaca gggaaaacaa ggccagaaa aggccaggaa cggtaataca gagaacaaa aggccaggaa ccgtaaaaag gcgcgttgc tggggtttt ccataaggcc 2240 cgcccccctg acgacaaa aggccagaa ccgtaaaaaag gcgcgttgc tggggtttt ccataggctc 2240 cgcccccctg acgacaaa agaccagaa cataaaaaacga ggttacccct ggaagctcc tcgtgggct tccctgggaaccagacaa acccgacaa ccgcagacaa ccggaaaaaaacgag gtttccccct ggaagctcc tcgggaacca acccggcaa accctggcaa ccacggctaaaaaaccgg gtttccccct ggaagctccc tcgggaagct ggcgctttct ccataggctca ccccggttca gccgacaga ccactggtaa caggattagc 2460 gtgaagcagaa ccccggttaa ccccggttaa cccggaagaaaaaccggaaaaaaacccgg tta	ccacgtgttc	accatggagg	gctgcggcaa	gggcaacatc	ctgttcggca	accagctggt	1200
ccagagette ccgccgget tegtgtacga gegeacetg egetacgagg acggeggett 1386 ggtggagate egeagegaca teaacetgat egaggagatg ttegtgtace gegtggagta 1446 caaggeege aactteecea acgacggee egtgatgaag aagaccatea eggeetgea 1566 geecagette gaggtggtg acatgacga eggegtgetg gtgggecagg tgatectggt 1566 ggtaccgcetg aacageggea agttetacag etgecacatg egeacetga tgaaggacaa 1686 egggggtggtg aaggacttee eggagtacea etteatecag eacegetgg agaaggacta 1686 eggggaggag egggetteg tgaggeage etgaccaget 1746 ggggaagace etgggagge tgagggaggaggaggaggaggaggaggaggaggaggagga	gcagatccgc	gtgaccaagg	gegeeecet	gcccttcgcc	ttcgacatcc	tgagccccgc	1260
ggtggagatc cgcagcgaca tcaacctgat cgaggagatg ttcgtgtacc gcgtggagta 1440 caaagggccgc aacttcccca acgacggccc cgtgatgaag aagaccatca ccggcctgca 1500 gcccagcttc gaggtggtg acatgaacga cggcgtgctg gtgggccagg tgatcctggt 1560 gtaccgcctg aacagcggca agttctacag ctgccacatg cgcaccctga tgaagagaaa 1620 gggggtggtg aaggacttcc ccgagtacca cttcatccag caccgcctga agaagaccta 1680 cgtggaggac ggcggcttcg tggagcagca cgagaccgcc atcgcccagc tgaaccagcct 1740 gggcaagccc ctgggcagcc tgcacgagtg ggtgtaatag ctcgagagat cttgtttatt 1800 gggcattata atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt 1860 ttttcactgc attctagttg tggtttgtcc aaactcatca atgtatctta tcatggctag 1920 ccggaccgtg tacccagctt ttgttccctt tagtgagggt taattgcgcg cttggcggtaa 1980 tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata 2040 cgagccggaa gcataaagtg taaagcctgg ggtgctaat gagtgagcta actcacatta 2100 attggttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2160 tgaatcggcc aacgcgcggg gagaggcggt ttggcggaa cggtatcagc tcactcaaag 2280 gcggtaatac ggttatcca agaatcagg gataacgcag gaaagaacat tcacaataa 2280 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat tcacaataa 2280 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat tcacaataa 2280 gcgccccctg acgagcatca caaaaaatcga gccgcgttgc tggcgtttt ccatcaaggc 2280 gcgccccctg acgagcatca caaaaaatcga gccgcgttgc tggcgtttt ccatcaaggc 2280 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2220 ccccccctg acgagcatca caaaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2460 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgct tcctgttccg 2520 accctgccgc ttaccggata cctgtccgcc tttcccctt cgggaagcgt ggcgctttct 2580 catagctcac gctgtaggta tctcagtccg gtgtaggtcg ttcgctccaa gctgggctgt 2580 catagctcac gctgtaggta tctcagtccg tgcgcttat ccggtaacta tcgtcttgag gtgcacgaac ccccggttca gcccgaccgc tgcgccttat ccggtaacta caggattagc agagcgaggt atgtaggcgg tgctacaaga cttgcagacg ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacaaga cttgcagacg ctaggattagc caggattagc	cttccagtac	ggcaaccgca	ccttcaccaa	gtaccccgag	gacatcagcg	acttcttcat	1320
caagggege aactteeca acgacggee egtgatgaag aagaccatea eeggeetgea 1500 geccagette gaggtggtg acatgaacga eggetgetg gtgggecagg tgateetggt 1560 gtacegeetg aacageggea agttetacag etgecacatg egcaccetga tgaagageaa 1620 ggggetggtg aaggacttee eegagtacca etteateeag eacegeetgg agaagaceta 1680 eggggetggtg aaggacttee eegagtacca etteateeag eacegeetgg agaagaceta 1740 ggggeaagee etgggeagee tgeacaggeg ggggtaatag eteggagagat ettgttatt 1800 geagettata atggttacaa ataaageaat ageateeaaa attteacaaa taaageattt 1800 eeggaceggt tacecaget ttgtteeet tagtgagggt taattgeege ettggegtaa 1920 eeggacegtg tacecagett ttgtteeett tagtgagggt taattgeege ettggegtaa 1930 eeggacegga geataaagtg taaageetgg ggtgetaat gagtgageta acteacata 2040 eegageeggaa geataaagtg taaageetgg ggtgetaat gagtgageta acteacata 2100 attgegttge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2160 etgaateggee aacgeeggg gagaggeggt tegggaaace tgtegtgeea getgeattaa 2160 etgaateggee aacgeegggg gagaggeggt tegggaaace tgtegtgeea getgeattaa 2160 etgaateggee aacgeegggg gagaggeggt tgteggaaace tgtegtgeea getgeattaa 2160 etgaateggee aacgeegggg gagaggeggt tgteggaaace tgtegtgeea getgeattaa 2160 etgaateggee aacgeegggg gagaggeggt tgteggaaace tgtegggea getgaataa 2160 etgaateggee aacgeegggg gagaggeggt tgteggagag gggatateage teacteaaag 2220 etcactgace gettaeegge ggtegtteegg etgeggtateeg eggegtatee egetteeteg 2220 etcactgace aegageagaa eegtaaaaaag geegggttge tggggttttt eeataggete 2240 eggeegeagaaa aggacagaa eegtaaaaaag geeggettge tggggttttt eeataggete 2400 egeeeeeetg aegageatea eegtaaaaaag geeggettge tgggggttttt eeataggete 2400 egeeeeeetg aegageatea eegtaaaaaag geeggettge tgggggttttt eegteegaa 2260 eggacataaaa agaaceagaa eegtaaaaaag eggaaggtegg tteegeteeaa geegggetgt 2520 aeeetgeege ttaeeggaat eetgaggetg tteegeteeaa geegggetgt 2520 aeeetgeege ttaeeggaa eeggacgeegge gggactatee eeggaaggeggg gggactaaa eeggagggggggggggggggggggggggggggggg	ccagagcttc	cccgccggct	tcgtgtacga	gcgcaccctg	cgctacgagg	acggcggcct	1380
geccagette gaggtggtgt acatgaacga eggegtgetg gtgggecagg tgateetggt 1560 gtacegectg acaagegga agttetacag etgecacatg egcacectga tgaagagcaa 1620 gggegtggtg aaggaettee eegagtacea etteateeag eacegectgg agaagaceta 1680 eggggaggaga eggggetteg tggagcagae eggageege ategeceage tgaacageet 1740 ggggcaagee etggggagee tgeacgagtg ggtgtaatag etegagagat ettgttatt 1800 geagettata atggttacaa ataaageaat ageateacaa attteacaaa taaageattt 1860 tttteaetge attetagttg tggtttgtee aaacteatea atgtatetta teatggetag 1920 eeggacegtg tacecagett ttgtteet tagtgagggt taattgegeg ettggegtaa 1930 eegageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacata 2040 eegageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacata 2100 attgegtteg etteetgegggggggggggggggggggg	ggtggagatc	cgcagcgaca	tcaacctgat	cgaggagatg	ttcgtgtacc	gcgtggagta	1440
gtacegcetg aacageggca agttetacag etgecacatg egeacectga tgaagagcaa 1626 gggegtggtg aaggaettee eegagtacca etteatecag eacegeetgg agaagaceta 1686 egtggaggae ggeggetteg tggaagagae egagacegee ategeceage tgaceageet 1746 gggacaagee etggaggagg ggtgtaatag etegagagat ettgtttatt 1806 geagettata atggttacaa ataaageaat ageateacaa attecacaaa taaageattt 1866 tttteactge attetagttg tggtttgtee aaacteatea atgtatetta teatggetag 1926 eegagacegtg tacecagett ttgtteett tagtgagggt taattgege ettggegtaa 1926 eegagacegtg tacecagett ttgtteett tagtgagggt taattgegeg ettggegtaa 1926 eegageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacata 2046 egageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacatta 2106 attgegtteg geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2166 etcactgact egetgeege ggtegtteeag etgeggaaace tgtegtgeea geggatataa 2286 geggtaataa ggttateeae agaateaggg gataacgag eggtateage teacteaaag 2286 geggtaataa ggttateeae agaateaggg gataacgag gaaagaacaat gtgageaaaa 2346 egeegeeceetg acgageatea eegaaaaaag geegegttge tggegtttt ceataggete 2406 egeeceectg acgageatea eegaaaaaag geegegttge tggegtttt ceataggete 2406 egeeceectg acgageatea eegaaaaaag geegegttge tggegtttt eeggegette 2586 eegaeetgeege ttaceggaaa eeggaaggetg tteegeteeaa geeggettee 2586 eaceetgeege ttaceggata eetgteegee ttteeeett egggaaageg ggegettet 2586 eatageteae getgtaggta teteagteeg gtgtaggteg ttegeteeaa getgggetgt 2646 egggaeegaac eeceeggtea geecegeetta eeggaaaceae eeceegtea geeggaeegg tgegeettat eeggtaaeta tegtettgag 2706 etcaaceegg taagacaeae ettategeea etggeagaa eeaetggaa eagataaee 2366 eggaagaggt atgtaggeeg ttegeteeaa getgggetgt 2646 eggaagaeggaggt atgtaggeeg tegeagaeae eeceeggtea eeceeggeege tgegeettat eeggtaaeta tegtettgag 2706 etcaaceegg taagaacaeae eeceegtea eeceeggeege tgegeettat eeggtaaeta eagaatage 2706 etcaaceegg taagaacaeae ettategeae etggeagaag eeaetggaa eagagataae 2826 eggaagaggg aagaggggg tagagaeggaggaggaggaggaggaggaggaggaggagagagaaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaea	caagggccgc	aacttcccca	acgacggccc	cgtgatgaag	aagaccatca	ccggcctgca	1500
gggcgtggtg aaggacttee ecgagtacea etteateeag cacegeetgg agaagaceta 1680 egtggaggae ggeggetteg tggacgaca eggaacegee ategeceage tgaceageet 1740 gggcaageee etgggcagee tgeacgagtg ggtgtaatag etegagagat ettgttatt 1800 geagettata atggttacaa ataaageaat ageateacaa attteacaaa taaageatt 1860 tttteactge attetagttg tggtttgtee aaacteatea atgtatetta teatggetag 1920 eeggacegtg taeceagett ttgtteeett tagtgagggt taattgegeg ettggegtaa 1930 eegageeggga geataaaggt tagtateeta ageateeta ageateeta agetgteete tggtgaaat tgttateege teacaaatee acacaacata 2040 eegageeggaa geataaaggt taaageetgg ggtgeetaat gagtgageta acteacatta 2100 attgggtge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2160 attggettge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2160 etacatgaet egetgegegg gagaggeggt ttgggtattg ggegetette egetteeteg 2220 etcactgae egetgeete ggtegtteeg etggggaaace tggeggtateage teacteaaag 2340 egggtaaatae ggttateeae agaateaggg gataacggag eggaaagaacat gtgageaaaa 2340 eggecageaaa aggeeaggaa eegtaaaaag geeggettgt tggegtttt ceataggete 2400 egeeeeetg aegageatea caaaaatega egeteaagte agaggtggg aaaceegaaa 2460 eggeeeeetg ttaeeeggata eetgteegee ttteeteeet egggaagetg ggegettet 2520 aceetgeeg ttaeeeggata eetgteegee ttteeteeet egggaagetg ggegettete 2520 aceetgeege ttaeeeggata eetgteegee ttteeteeet egggaagetg ggegettet 2580 eatageteae getgaggta teteagteeg ttgegeettat eegggaagetg 2640 eggeeegaae eeeeggata eetgteegee ttteeteeet egggaagetg ggegettet 2580 eatageteae getgaggta teteagteeg ttgegeettat eeggtaacta tegtettgag 2700 etcaaceegg taagacaeae ettategeea etggegeettat eeggtaacta tegtettgag 2700 etcaaceegg taagacaeae ettategeea etggegeettat eeggtaacta eaggattage 2700 etcaaceegg taagacaeae ettategeea etggeageae eeggeagaa eacetggeaa eagaggegggaggaggaggaggaggaggaggaggaggagg	gcccagcttc	gaggtggtgt	acatgaacga	cggcgtgctg	gtgggccagg	tgatcctggt	1560
cgtggaggac ggcggcttcg tggagcagca cgagaccgcc atcgcccagc tgaccagcct 1746 gggcaagccc ctgggcagcc tgcacgagtg ggtgtaataag ctcgagagat cttgtttatt 1866 gcagcttata atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt 1866 ttttcactgc attctagttg tggtttgtcc aaactcatca atgtatctta tcatggctag 1926 ccggaccgtg tacccagctt ttgttccctt tagtgagggt taattgcgcg cttggcgtaa 1986 tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata 2046 cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2106 attggttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2166 tgaatcggcc aacggcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 2226 ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2346 ggccagcaaa aggccaggaa ccgtaaaaaag gccgcgttgc tggcgtttt ccataggctc 2406 cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2466 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2526 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagctg ggcgctttct 2586 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctcaa gctgggctgt tccaacccgg taacgacac ccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2706 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2766 agaggggaggt atgtaggcg tgctacagga ttcttgaag ggtggcctaa ctacggctac 2826 agaggcgaggt atgtaggcg tgctacagag ttcttgaag ggtggcctaa ctacggctac 2826 agaggcgaggt atgtaggcg tgctacagag ttcttgaag ggtggcctaa ctacggctac 2826 agaggcgaggt atgtaggcgg tgctacagag ttcttgaag ggtggcctaa ctacggctac 2826 agaggcgaggt atgtaggcg tgctacagag ttcttgaag ggtggcctaa ctacggctac 2826 agaggcgaggt atgtaggcgg tgctacagag ttcttgaag ggtggcctaa ctacggctac 2826 agaggcgaggt atgtaggcgg tgctacagag ccactggtaa cacggattagc 2766 agaggcgaggt atgtaggcgg tgctacagag ttcttgaag ggtggcctaa ctacggctac 2826	gtaccgcctg	aacagcggca	agttctacag	ctgccacatg	cgcaccctga	tgaagagcaa	1620
gggcaagccc ctgggcagcc tgcacgagtg ggtgtaatag ctcgagagat cttgtttatt 1800 gcagcttata atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt 1860 ttttcactgc attetagttg tggtttgtcc aaactcatca atgtatetta tcatggctag 1920 ccggaccgtg tacccagctt ttgttccctt tagtgagggt taattgcgcg cttggcgtaa 1920 tcatggtcat agctgttcc tggtgtgaaat tgttatccgc tcacaattcc acacaacata 2040 cgagccggaa gcataaaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2100 attgggttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2160 tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 2220 ctcactgac cgctgcgcg ggtgcgtaggggggggggg	gggcgtggtg	aaggacttcc	ccgagtacca	cttcatccag	caccgcctgg	agaagaccta	1680
geagettata atggttacaa ataaageaat ageateacaa attteacaaa taaageattt 1860 tttteactge attetagttg tggtttgtee aaacteatea atgtatetta teatggetag 1920 eeggacegtg taceeagett ttgtteeett tagtgagggt taattgegeg ettggegtaa 1980 teatggteat agetgttee tggtgaaat tgttateege teacaattee acacaacata 2040 egageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacatta 2100 attgegttge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2160 tgaateggee aaegeggggg gagaggeggt ttgegtattg ggegetette egetteeteg 2220 etcactgae egetgegete ggtegtteegg etgeggeag eggtateage teacteaaag 2340 ggeggtaatac ggttateeae agaateaggg gataacgeag gaaagaacat gtgageaaaa 2340 eggecegeaaa aggeeaggaa eegtaaaaaa geeggegttge tggegtttt ceataggete 2460 eggeceecetg acgageatea eaaaaatega egeteaagte agaggtggeg aaaccegaca 2460 eggeceecetg acgageatea eaaaaatega egeteaagte agaggtggeg aaaccegaca 2460 eggecegege ttaceggata eetgteegee ttteteeett egggaagegg gggetttet 2580 eatageteae getgtaggta teteagteeg ttteteeett egggaagegg gggetttet 2580 eatageteae getgtaggta teteagteeg ttteteeett egggaagegg gggetttet 2640 eggeaegaae eeeeggttaa eetgteegee ttteteeett egggaagegg ggegetttet 2580 eatageteae getgtaggta teteagteeg ttegeettat eeggtaacta tegtettgag 2700 teeaaccegg taagacaega ettategeea etggeettat eeggtaacta tegtettgag 2700 teeaaccegg taagacaega ettategeea etggeettat eeggtaacta tegtettgag 2700 teeaaccegg taagacaega ettategeea etggeettat eeggtaacta eaggattage 2700 agaggegggt atgtaggegg tgetacagaa ettategeea etggeettat eeggtaacta eaggattage 2700 agaggegggt atgtaggegg tgetacagaa ettategeea etggeettat eeggtaacta eaggattage 2700 agaggeggggt atgtaggegg tgetacagaa ettategeea etggeettat eeggtaacta eaggattage 2700 agaggeggggt atgtaggegg tgetacagaa ettategea etggegettat eeggtaacta eaggattage 2700 agaggeggggggggggggggggggggggggggggggg	cgtggaggac	ggcggcttcg	tggagcagca	cgagaccgcc	atcgcccagc	tgaccagcct	1740
ttttcactge attctagttg tggtttgtce aaacteatea atgtatetta teatggetag 1920 ceggaeegtg tacceagett ttgtteeett tagtgagggt taattgegeg ettggegtaa 1980 teatggteat agetgttee tggtgaaat tgttateege teacaattee acacaacata 2040 cgageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacatta 2100 attgegttge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2160 tgaateggee aaeggegggg gagaggeggt ttgegtattg ggegetette egetteeteg 2220 etcactgae egetgeete ggtegtteeg etgeggeag eggtateage teacteaaag 2280 ggeggtaatae ggttateeae agaateaggg gataacgeag gaaagaacat gtgageaaaa 2340 ggeeageaaa aggeeaggaa eegtaaaaag geeggettge tggegtttt ecataggete 2400 egeceeetg acgageatea eaaaaatega egeteaagte agaggtgge aaaceeggae 2460 ggaetataaa gataceagge gtteeeeet ggaageteee tegtgegete teetggeetete 2520 accetgeege ttaceggata eetgteegee ttteeeet egggaagegg ggegtttet 2580 eatageteae getgtaggta teteagetee gtgaggteg teeggeage geggtatete 2640 gtgaeacgaa eeetgteegee ttteeeet egggaagegg ggegetttet 2580 eatageteae getgtaggta teteagetee tteeteete egggaagegg ggegetttet 2640 gtgaeacgaa eeeeggtea eeeggeegge tteeteeee tegggaagegg ggegetttet 2580 eatageteae getgtaggta teteagetee tteeteete egggaagegg ggegetttet 2640 gtgaeacgaa eeeeeggtea eeeggeegge tggaeacta eeggaatage 2700 teeaaceegg taagaacaga ettategeea etggeeettat eeggtaaeta tegetetgag 2700 teeaaceegg taagaacaga ettategeea etggeeettat eeggtaaeta tegetetgag 2700 agagaggggaggt atgtaggegg tgetacaagag ttettgaag ggtggeetaa etaceggetae 2820 agagagggggggggggggggggggggggggggggggg	gggcaagccc	ctgggcagcc	tgcacgagtg	ggtgtaatag	ctcgagagat	cttgtttatt	1800
coggacogtg taccoagett ttgttccctt tagtgagggt taattgogg cttggcgtaa 1980 teatggteat agetgttee tgtgtgaaat tgttateege teacaattee acacaacata 2040 cgagcoggaa gcataaagtg taaagcetgg ggtgcctaat gagtgageta acteacatta 2100 attgcgttge gctcactgce cgctttccag tegggaaace tgtcgtgcca gctgcattaa 2160 ctaactgact egetgcgegg gagaggcggt ttgcggtattg ggcgctctte cgcttcctcg 2220 ctcactgact egetgcgete ggtcgttcgg etgcgggag eggtateage teacteaaag 2280 ggcggtaatac ggttatecac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2340 ggccagcaaa aggccaggaa ecgtaaaaaag gccgcgttge tggcgtttt ccataaggcte 2400 egeccecctg acgagcatca caaaaaatcga egetcaagte agaagtgggg aaacccgaca 2460 ggactataaa gataccagge gtttecccet ggaagetee tegtgegete teetgtteeg 2520 accctgcege ttaccggata ectgccgce tttetecctt egggaaggt ggcgtttet 2640 gtgcgcacgaa eccctgccgc ttaccggata tetcagtteg gtgtaggteg ttegeteaa getgggctgt 2640 gtgcgcacgaa eccctgcgc taacggata ectgagteg tgcgccttat ecggtaacta tegtettgag 2700 tecaaccegg taagaccaga ettategeca etggcacgaa ecactggtaa caggattage 2700 agagccgggt taagaccaga ettategeca etggcacgaa ecactggtaa caggattage 2700 agagccgggt taagaccaga ettategeca etggcacgaa ecactggtaa caggattage 2700 agagccgaggt atgtaggegg tgctacagag ttettgaagt ggtggcctaa etacggctac 2820 agagccggggt atgtaggegg tgctacagag ttettgaagt ggtggcctaa etacggctac 2820 agagccggggt atgtaggegg tgctacagag ttettgaagt ggtggcctaa etacggctac 2820 agagccgaggt atgtaggegg tgctacagag ggtggcgaaga etacacgaca 2820 agagccgaggt atgtaggegg tgctacagag ggtgctacagac etacacgacaa etacggctac 2820 agagccgaggt atgtaggegg tgctacagag ggtgctacaa etacggctac 2820 agagccgaggt atgtaggcgg tgctacagag ggtgctacaacacacacacacacacacacacacacacaca	gcagcttata	atggttacaa	ataaagcaat	agcatcacaa	atttcacaaa	taaagcattt	1860
teatggteat agetgtttee tgtgtgaaat tgttateege teacaattee acacaacata 2046 egageeggaa geataaagtg taaageetgg ggtgeetaat gagtgageta acteacatta 2106 attgegttge geteactgee egettteeag tegggaaace tgtegtgeea getgeattaa 2166 tgaateeggee aacgeeggg gagaggeggt ttgegtattg ggegetette egetteeteg 2226 etcactgact egetgegete ggtegttegg etgeggegag eggtateage teacteaaag 2346 ggegetaatae ggttateeae agaateaggg gataacgeag gaaagaacat gtgageaaaa 2346 ggeeageaaa aggeeaggaa eegtaaaaaag geeggttge tggegtttt ceataggete 2406 eggeeeeetg acgageatea caaaaaatega egeteaagte agaggtggeg aaaceeggaa 2466 ggactataaa gataceagge gttteeeeet ggaaageteee tegtgegete teetgtteeg 2526 accetgeege ttaceggata eetgeegee ttteteeett egggaagget ggegetttet 2586 eatageteae getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt 2646 gtgeaegaae eeeeegttea geeegaeege tgegeettat eeggtaacta tegtettgag 2766 agageeggaggt aagaacaega ettategeea etggeagaag eeaetggtaa eaggattage 2766 agagaeggggt aagaacaegg tgetacaagag ttettgaagt ggtggeetaa eaggattage 2766 agagaeggggt aatgtaggegg tgetacaagag ttettgaagt ggtggeetaa etaeggetae 2826 agagaeggggt atgtaggegg tgetacaagag ttettgaagt ggtggeetaa etaeggetae 2826 agagaegggggt atgtaggegg tgetacaagag ttettgaagt ggtggeetaa etaeggetae 2826 agagaegggggt atgtaggegg tgetacaagag ttettgaagt ggtggeetaa etaeggetae 2826 agagaeggaggt atgtaggegg tgetacaagag ttettgaagt ggtggeetaa etaeggetae 2826 agagaeggaggt atgtaggegg tgetacaagag ttettgaagt ggtggeetaa etaeggetae 2826 agagaeggaggt atgtaggegg tgetacaagag ggtggeetaa etaeggetae 2826 agagaeggaggaggaggaggaggaeggaeggaggaeggaeggagga	ttttcactgc	attctagttg	tggtttgtcc	aaactcatca	atgtatctta	tcatggctag	1920
cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 2100 attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2160 ctgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 2220 ctcactgact cgctgcgctc ggtcgttcgg ctgcgggag cggtatcagc tcactcaaag 2280 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2340 ggccagcaaa aggccaggaa ccgtaaaaaag gccgcgttgc tggcgtttt ccataggctc 2400 cgccccctg acgagcatca caaaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2460 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2520 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgcttct 2580 cataggctca gctgtaggta tctcagttcg gtgtaggtcg ttcgctcaa gctgggctgt 2640 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2700 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2760 agagcgggt atgtaggcgg tgctacaagag ttcttgaagt ggtggcctaa ctacggctac 2820 agagcggggt atgtaggcgg tgctacaagag ttcttgaagt ggtggcctaa ctacggctac 2820 agagcggaggt atgtaggcgg tgctacaagag ttcttgaagt ggtggcctaa ctacggctac 2820 agagcggggt atgtaggcgg tgctacaagag ttcttgaagt ggtggcctaa ctacggctac 2820 agagcgggaggt atgtaggcgg tgctacaagag ggtggcctaa ctacggctac 2820 agagcggaggt atgtaggcgg tgctacaagag ggtggcctaa ctacggctac 2820 agagcgcgaggt atgtaggcggagagagag ggtggccaacaa 2220 agagcgcagaacaa 2220 agagcgcagaacaa 2220 agagcgcagaacaa 2220 agagcgcagaacaa 2220 agagcagaacaa 2220 agagcagaacaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ccggaccgtg	tacccagctt	ttgttccctt	tagtgagggt	taattgcgcg	cttggcgtaa	1980
attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2160 tgaatcggcc aacgcgggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 2220 ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag 2280 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2340 ggccagcaaa aggccaggaa ccgtaaaaaag gccgcgttgc tggcgttttt ccataaggctc 2400 cgccccctg acgagcatca caaaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2460 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2520 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct 2580 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctcaa gctgggctgt 2640 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2700 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2760 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820	tcatggtcat	agctgtttcc	tgtgtgaaat	tgttatccgc	tcacaattcc	acacaacata	2040
tgaateggee aaegegeggg gagaggeggt ttgegtattg ggegetette egetteeteg 2226 etcaetgaet egetgegete ggtegttegg etgeggegag eggtateage teaeteaaag 2286 geggtaatae ggttateeae agaateaggg gataaegeag gaaagaacat gtgageaaaa 2346 ggeececetg aegageatea caaaaatega egeteaagte agaggtggeg aaaecegaca 2466 ggaetataaa gataeeagge gttteeeeet ggaageteee tegtgegete teetgtteeg 2526 aeeetgeege ttaeeggata eetgteegee ttteeteett egggaagegt ggegettet 2586 gtgegeaegae eeeeeggte getgaggte ttegeteea getgggetge 2546 gtgegeaegae eeeeeggtege tteetgteeg 2526 aeeetgeege ttaeeggata teteagteeg gtgtaggteg ttegeteeaa getgggetgt 2646 gtgegeaegae eeeeeggtea geeegaeege tgegeettat eeggtaaeta tegtettgag 2706 teeaaeeegg taagaeaega ettategeea etggeettat eeggtaaeta tegtettgag 2766 agageegggt atgtaggegg tgetaeaagag ttettgaagt ggtggeetaa etaeggetae 2826 agageegaggt atgtaggegg tgetaeagag ttettgaagt ggtggeetaa etaeggetae 2826	cgagccggaa	gcataaagtg	taaagcctgg	ggtgcctaat	gagtgagcta	actcacatta	2100
ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag 2280 gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2340 ggccagcaaa aggccaggaa ccgtaaaaaa gccgcgttgc tggcgtttt ccataggctc 2400 cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2460 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2520 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct 2580 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 2640 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2700 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2760 agaggcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820 agaggcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820	attgcgttgc	geteactgee	cgctttccag	tegggaaace	tgtcgtgcca	gctgcattaa	2160
geggtaatac ggttatecac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 2346 ggccagcaaa aggccaggaa cegtaaaaag geegegttge tggegtttt ceataggete 2400 egececeetg acgagcatca caaaaatcga egeteaagte agaggtggeg aaaccegaca 2460 ggactataaa gataccagge gttteceeet ggaageteee tegtgegete teetgtteeg 2520 accetgeege ttaceggata eetgteegee ttteteeett egggaagegt ggegetttet 2580 eatageteac getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt 2640 gtgcacgaac eeeeegttea geeegacege tgegeettat eeggtaacta tegtettgag 2700 tecaaccegg taagacacga ettategeea etggcagcag ceactggtaa caggattage 2760 agagegaggt atgtaggegg tgetacagag ttettgaagt ggtggeetaa etaeggetae 2820	tgaatcggcc	aacgcgcggg	gagaggcggt	ttgcgtattg	ggegetette	cgcttcctcg	2220
ggccagcaaa aggccaggaa ccgtaaaaaag gccgcgttgc tggcgttttt ccataggctc 2400 cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2460 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2520 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct 2580 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 2640 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2700 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2760 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	2280
cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2466 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2526 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct 2586 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 2646 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2706 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2766 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2826	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	2340
ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2520 accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgcttct 2580 catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 2640 gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2700 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2760 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820	ggccagcaaa	aggccaggaa	ccgtaaaaag	geegegttge	tggcgttttt	ccataggete	2400
accetgeege ttaceggata cetgteegee ttteteeett egggaagegt ggegettett 2586 catageteae getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt 2646 gtgcacgaac eeceegttea geeegacege tgegeettat eeggtaacta tegtettgag 2706 tecaaceegg taagacacga ettategeea etggeageag ceaetggtaa eaggattage 2766 agagegaggt atgtaggegg tgetacagag ttettgaagt ggtggeetaa etaeggetae 2826	cgcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	2460
catageteac getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt 2646 gtgcacgaac ceceegttea geeegaeege tgegeettat ceggtaacta tegtettgag 2706 tecaaceegg taagacaega ettategeea etggeageag ceaetggtaa caggattage 2766 agagegaggt atgtaggegg tgetacagag ttettgaagt ggtggeetaa etaeggetae 2826	ggactataaa	gataccaggc	gtttccccct	ggaageteee	tegtgegete	tcctgttccg	2520
gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 2700 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 2760 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820	accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	2580
tccaaccogg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattage 2760 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 2820	catageteae	gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	2640
agagegaggt atgtaggegg tgetacagag ttettgaagt ggtggeetaa etaeggetae 2820	gtgcacgaac	cccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	tcgtcttgag	2700
	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	2760
actagaagga cagtatttgg tatetgeget etgetgaage cagttacett eggaaaaaga 2880	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	2820
	actagaagga	cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	2880
gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc 2940	gttggtagct	cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	ttttgtttgc	2940
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg 3000	aagcagcaga	ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	3000

-continued

-continued	
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca	3060
aaaaggatet teacetagat eettttaaat taaaaatgaa gttttaaate aatetaaagt	3120
atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca	3180
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg	3240
atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca	3300
ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt	3360
cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaagt	3420
agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca	3480
egetegtegt ttggtatgge tteatteage teeggtteee aaegateaag gegagttaca	3540
tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga	3600
agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact	3660
gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga	3720
gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg	3780
ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc	3840
tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga	3900
tetteageat ettttaettt eaccagegtt tetgggtgag eaaaaacagg aaggeaaaat	3960
gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt	4020
caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt	4080
atttagaaaa ataaacaaat aggggtteeg egeacattte eeegaaaagt geeac	4135
<pre><210> SEQ ID NO 8 <211> LENGTH: 187 <212> TYPE: DNA <211> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: JeT Promoter <220> FEATURE: <221> NAME/KEY: promoter <222> LOCATION: (1) (187) <223> OTHER INFORMATION: JeT promoter</pre>	
<400> SEQUENCE: 8	
cgggcggagt tagggcggag ccaatcageg tgcgccgttc cgaaagttgc cttttatggc	60
tgggcggaga atgggcggtg aacgccgatg attatataag gacgcgccgg gtgtggcaca	120
gctagttccg tcgcagccgg gatttgggtc gcggttcttg tttgtggatc cctgtgatcg	180
tcacttg	187
<210> SEQ ID NO 9 <211> LENGTH: 529 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 9	
Met Thr Ser Ser Arg Leu Trp Phe Ser Leu Leu Leu Ala Ala Phe 1 5 10 15	
Ala Gly Arg Ala Thr Ala Leu Trp Pro Trp Pro Gln Asn Phe Gln Thr 20 25 30	
Ser Asp Gln Arg Tyr Val Leu Tyr Pro Asn Asn Phe Gln Phe Gln Tyr	

Asp Val Ser Ser Ala Ala Gln Pro Gly Cys Ser Val Leu Asp Glu Ala 50 55 60

Phe 65	Gln	Arg	Tyr	Arg	Asp 70	Leu	Leu	Phe	Gly	Ser 75	Gly	Ser	Trp	Pro	Arg 80
Pro	Tyr	Leu	Thr	Gly 85	Lys	Arg	His	Thr	Leu 90	Glu	Lys	Asn	Val	Leu 95	Val
Val	Ser	Val	Val 100	Thr	Pro	Gly	Cys	Asn 105	Gln	Leu	Pro	Thr	Leu 110	Glu	Ser
Val	Glu	Asn 115	Tyr	Thr	Leu	Thr	Ile 120	Asn	Asp	Asp	Gln	Сув 125	Leu	Leu	Leu
Ser	Glu 130	Thr	Val	Trp	Gly	Ala 135	Leu	Arg	Gly	Leu	Glu 140	Thr	Phe	Ser	Gln
Leu 145	Val	Trp	Lys	Ser	Ala 150	Glu	Gly	Thr	Phe	Phe 155	Ile	Asn	Lys	Thr	Glu 160
Ile	Glu	Asp	Phe	Pro 165	Arg	Phe	Pro	His	Arg 170	Gly	Leu	Leu	Leu	Asp 175	Thr
Ser	Arg	His	Tyr 180	Leu	Pro	Leu	Ser	Ser 185	Ile	Leu	Asp	Thr	Leu 190	Asp	Val
Met	Ala	Tyr 195	Asn	Lys	Leu	Asn	Val 200	Phe	His	Trp	His	Leu 205	Val	Asp	Asp
Pro	Ser 210	Phe	Pro	Tyr	Glu	Ser 215	Phe	Thr	Phe	Pro	Glu 220	Leu	Met	Arg	TÀa
Gly 225	Ser	Tyr	Asn	Pro	Val 230	Thr	His	Ile	Tyr	Thr 235	Ala	Gln	Asp	Val	Lys 240
				245					250			Val		255	
	_		260	_				265	_	_		Gly	270		_
		275		-	-		280					Gly 285			_
	290					295			-		300	Met			
305					310				_	315	-	Leu			320
				325					330			Pro		335	
			340					345				Lys	350		
	Phe	Tyr 355			Thr		360					365		Gly	
	370					375					380	Val			
385					390					395		Pro			400
Met	Lys	Glu	Leu	Glu 405	Leu	Val	Thr	Lys	Ala 410	Gly	Phe	Arg	Ala	Leu 415	Leu
Ser	Ala	Pro	Trp 420	Tyr	Leu	Asn	Arg	Ile 425	Ser	Tyr	Gly	Pro	Asp 430	Trp	Lys
Asp	Phe	Tyr 435	Ile	Val	Glu	Pro	Leu 440	Ala	Phe	Glu	Gly	Thr 445	Pro	Glu	Gln
Lys	Ala 450	Leu	Val	Ile	Gly	Gly 455	Glu	Ala	Сув	Met	Trp 460	Gly	Glu	Tyr	Val
Asp 465	Asn	Thr	Asn	Leu	Val 470	Pro	Arg	Leu	Trp	Pro 475	Arg	Ala	Gly	Ala	Val 480

```
Ala Glu Arg Leu Trp Ser Asn Lys Leu Thr Ser Asp Leu Thr Phe Ala
                485
                                     490
Tyr Glu Arg Leu Ser His Phe Arg Cys Glu Leu Leu Arg Arg Gly Val
                                 505
Gln Ala Gln Pro Leu Asn Val Gly Phe Cys Glu Gln Glu Phe Glu Gln
                             520
Thr
<210> SEQ ID NO 10
<211> LENGTH: 195
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Modified JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(195)
<223> OTHER INFORMATION: Modified JeT Promoter
<400> SEQUENCE: 10
gaattcgggc ggagttaggg cggagccaat cagcatgcac cattccaaaa gttgcctttt
                                                                        60
atggctgggc ggagaatggg cggtgaacac caatgattat ataaggacac accaggtgtg
                                                                       120
quadaqutaq ttocatcaca quaqquaqu ccaacaqacq tottqtttqt qqatccctqt
                                                                       180
gatcatcact tgaca
                                                                       195
<210> SEQ ID NO 11
<211> LENGTH: 140
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic Intron
<220> FEATURE:
<221> NAME/KEY: Intron
<222> LOCATION: (1) .. (140)
<400> SEQUENCE: 11
gtaagtcact gactgtctat acctgggaaa gggtgggcag gagatagggc agtgcaggaa
aagtggcact ataaaccctg cagccctagg aatacatcta gacaattgta ctaaccttct
                                                                       120
tctctttcct ctcctgacag
                                                                       140
<210> SEQ ID NO 12
<211> LENGTH: 12
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Motif Ten Element Consensus Sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(12)
<223> OTHER INFORMATION: Motif Ten Element (MTE) Consensus Sequence
<400> SEQUENCE: 12
csarcssaac gs
                                                                        12
<210> SEQ ID NO 13
<211 > LENGTH: 78
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Portion of JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(78)
<223> OTHER INFORMATION: Portion of JeT Promoter
```

-continued

```
<400> SEQUENCE: 13
atgattatat aaggacgcgc cgggtgtggc acagctagtt ccgtcgcagc cgggatttgg
                                                                         60
gtcgcggttc ttgtttgt
                                                                        78
<210> SEQ ID NO 14
<211> LENGTH: 78
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Modified Portion of JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(78)
<223> OTHER INFORMATION: Modified portion of JeT promoter with addition
      of MTE (without CpG) and DPE consensus sequence
<400> SEQUENCE: 14
atgattatat aaggacgege egggtgtgge acagetagtt eegtegeage eggecageee
                                                                         60
aacagacgtc ttgtttgt
                                                                         78
<210> SEQ ID NO 15
<211> LENGTH: 78
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Modified Portion of JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1) ... (78) <223> OTHER INFORMATION: Modified portion of JeT promoter with addition
      of MTE and DPE consensus sequence
<400> SEOUENCE: 15
atgattatat aaggacgcgc cgggtgtggc acagctagtt ccgtcgcagc cctcgagccg
                                                                        60
agcagacgtc ttgtttgt
                                                                        78
<210> SEQ ID NO 16
<211> LENGTH: 78
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Modified Portion of JeT Promoter
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(78)
<223> OTHER INFORMATION: Modified portion of JeT promoter with addition
      of MTE and DPE consensus sequence.
atgattatat aaggacgege egggtgtgge acagetagtt eegtegeage eetegaaceg
aacagacgtc ttgtttgt
                                                                         78
<210> SEQ ID NO 17
<211> LENGTH: 10
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Alternative MTE Form
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: Portion of Alternative MTE Form
<400> SEQUENCE: 17
```

cgagccgagc 10

-continued

```
<210> SEQ ID NO 18
<211> LEMGTH: 10
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<222> OTHER INFORMATION: Alternative MTE Form
<220> FEATURE:
<221> NAME/KEY: misc_feature
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(10)
<223> OTHER INFORMATION: Portion of Alternative MTE Form
<400> SEQUENCE: 18
cgaaccgaac
Cgaaccgaac
```

The invention claimed is:

- 1. A polynucleotide, comprising:
- a JeT promoter or variant thereof,
- a synthetic intron sequence less than 400 bases in length, the intron sequence having at least 90% sequence identity to SEQ ID NO: 11; and
- a polynucleotide sequence encoding a polypeptide or protein, the sequence operatively linked to the promoter.
- **2**. The polynucleotide of claim **1**, wherein the JeT promoter or variant thereof has at least 90% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 8, or SEQ ID NO: 10. 30
- 3. The polynucleotide of claim 1, wherein the JeT promoter or variant thereof has at least 90% sequence identity to at least one of SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 16 in the JeT promoter sequence from -36 to +42 relative to the transcription start site (Inr).
- **4.** The polynucleotide of claim **1**, wherein the JeT promoter or variant thereof has at least 99% sequence identity to at least one of SEQ ID NO: 14, SEQ ID NO: 15, and SEQ ID NO: 16 in the JeT promoter sequence from -36 to +42 relative to the transcription start site (Inr).
- 5. The polynucleotide of claim 1, wherein the JeT promoter or variant thereof has the nucleotides CT at locations +16 and +17 from the Inr A+1 transcription initiation site.
- **6.** The polynucleotide of claim **1**, the polypeptide or protein comprising a β -hexosaminidase protein, a subunit ⁴⁵ thereof, or a variant thereof.
- 7. The polynucleotide of claim 1, wherein the polynucleotide sequence encoding a polypeptide or protein is less than about 4.0 kilobases in length.
- **8**. The polynucleotide of claim **1**, wherein the polynucleotide sequence encoding a polypeptide or protein is between 1.2 and 2.0 kilobases in length.
- 9. The polynucleotide of claim 1, wherein the polynucleotide sequence encodes a polypeptide having at least 80% sequence identity to residues 89-529 of the alpha-subunit of 55 Hex A (SEQ ID NO: 9) or conservative variants thereof.
 - 10. A transgene expression system comprising
 - (a) a polynucleotide sequence comprising a transgene operably linked to a JeT promoter, or variant thereof, and a synthetic intron sequence of less than 400 bases in length, the intron sequence having at least 90% sequence identity to SEQ ID NO: 11; and
 - (b) a viral vector carrying the polynucleotide sequence.

- 11. The transgene expression system of claim 10, the viral vector comprising an adeno-associated virus (AAV) vector.
- 12. The transgene expression system of claim 10, wherein the JeT promoter or variant thereof has at least 90% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 8, or SEO ID NO: 10.
- 13. The transgene expression system of claim 10, the transgene coding for a β -hexosaminidase protein, a subunit thereof, or a variant thereof.
- **14**. The transgene expression system of claim **10**, the transgene encoding a polypeptide having at least 80% sequence identity to residues 89-529 of the alpha-subunit of Hex A (SEQ ID NO: 9) or conservative variants thereof.
- 15. The polynucleotide of claim 1, the intron sequence having at least 98% sequence identity to SEQ ID NO: 11.
- **16**. The polynucleotide of claim **1**, the intron sequence comprising SEQ ID NO: 11.
 - 17. A polynucleotide, comprising:
 - a JeT promoter or variant thereof, wherein the JeT promoter or variant thereof has at least 90% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 8, or SEQ ID NO: 10,
 - a synthetic intron sequence less than 400 bases in length, and
 - a polynucleotide sequence encoding a polypeptide or protein, the sequence operatively linked to the promoter.
- 18. The polynucleotide of claim 17, the polypeptide or protein comprising a β -hexosaminidase protein, a subunit thereof, or a variant thereof.
 - 19. A transgene expression system comprising:
 - (a) a polynucleotide sequence comprising a transgene operably linked to a JeT promoter, or variant thereof, wherein the JeT promoter or variant thereof has at least 90% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 8, or SEQ ID NO: 10, and a synthetic intron sequence of less than 400 bases in length; and
 - (b) a viral vector carrying the polynucleotide sequence.
- 20. The transgene expression system of claim 19, the viral vector comprising an adeno-associated virus (AAV) vector.

* * * * *